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Abstract—We define a representation of conditional indepen-
dence in terms of products of probability kernels, and ask
when such representations are computable. We pursue this
question in the context of exchangeable sequences and arrays of
random variables, which arise in statistical contexts. Exchange-
able sequences are conditionally i.i.d. by de Finetti’s theorem.
Known results about the computability of de Finetti’s theorem
imply that these conditional independences are computable.
The conditional independences underlying exchangeable arrays
are characterized by the Aldous—Hoover theorem. In the
special case of adjacency matrices of undirected graphs, i.e.,
symmetric binary arrays, this representation theorem expresses
the conditional independences in terms of graphons. We prove
that there exist exchangeable random graphs that can be
computably sampled but whose corresponding graphons are
not computable as functions or even as L' equivalence classes.
We also give results on the approximability of graphons in
certain special cases.

1. Introduction

Independent random variables are fundamental build-
ing blocks for random structures exhibiting complex de-
pendencies. Besides independence, the most fundamental
(in)dependence is conditional independence. Conditional
independence relationships among random variables have a
critical bearing on the complexity of many computational
tasks, including sampling and probabilistic inference. In par-
ticular, conditional independences among random variables
imply that their joint distribution factorizes into a product
of simpler distributions on subsets of the variables. It is this
factorization that is often exploited for efficient computation.
Given the importance of conditional independences and the
factorizations they induce, it is worth building a formal
computational model of conditional independence itself.

To that end, consider n random variables, Xi,...,X,.
Recall that Xi,...,X, are independent if the (joint proba-
bility) distribution of (X,...,X,) is equal to the product of
the (marginal) distributions on X;, for i =1,...,n, i.e., the
joint distribution satisfies the factorization P[(Xi,...,X,)] =
@7 P[X;]. Introducing a random variable ¥, we may now
refer to the conditional distribution of X; given Y. Write
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T,S1,...,S, for the spaces in which the random variables
Y. Xi,...,X, take values. Recall that the conditional distribu-
tion P[X;|Y] is in fact a random variable of the form g(¥)
for some function g on 7 taking values in the space of
probability measures on S;. The function g is a probability
kernel from T to §;, and any probability kernel / such that
g(Y)=h(Y) as. is said to be a version of g. We say that

Xi,...,X, are conditionally independent given Y if the fac-
torization P[Xj,..., X, |Y] = ®}_,P[X;|Y] holds. For infinite
collections X1, X>, ..., conditional independence requires that

the factorization hold only for all finite subcollections.

In light of these definitions, it is natural to express the
computability of conditional independence in terms of the
computability of the resulting factorizations of the joint
distributions, which in turn is naturally expressed in terms
of the computability of the family of probability kernels.

There is already a rich literature studying notions of
computability for distributions and probability kernels on
spaces endowed with notions of computability. Using these
notions, we can give several natural representations for
joint distributions and their factorizations. To begin, dis-
tributions can be naturally represented as functions taking
representations of open sets to their probability assignment.
Equivalently, distributions can be given sampling repre-
sentations where a function f: [0,1] — S represents the
distribution of the S-valued random variable f(U), when U is
a uniformly distributed element in [0, 1]. In order to determine
a concrete representation, one must fix a representation for
the function f. Randomized algorithms that halt almost
surely correspond to computable elements in the space of
functions that are continuous on a (Lebesgue) measure one
subset of [0, 1]. Weaker representations can be obtained by
representing equivalence classes of functions up to null sets.
In particular, when S is a bounded subset of the reals, it is
natural to represent f as a computable point in the space of
L'-integrable functions.

These representations for distributions lead to natural rep-
resentation for probability kernels. For example, probability
kernels from S to T can be represented as maps from S to
distributions on 7. Alternatively, such probability kernels can
also be given sampling representations f: [0,1] xS — T
such that the distribution of f(U,s) is the same as the image
of the probability kernel at s. Just as above, there is flexibility



in how to represent f.

In this work, we initiate the study of conditional inde-
pendence from this computational perspective. We focus on
exchangeable random structures, a setting where there are
precise characterizations of the conditional independences
that hold in general.

A sequence of random variables is exchangeable when
its distribution does not depend on the ordering of its
elements. A well-known theorem of de Finetti shows that
infinite exchangeable sequences of random variables are
conditionally independent and identically distributed (i.i.d.),
meaning that, by introducing a new random variable and con-
ditioning on its value, any apparent dependence between the
random variables in the exchangeable sequence is removed
and all the variables have the same distribution. In terms
of factorizations, exchangeability of an infinite sequence
X1,X2,... 1s equivalent to the existence of some random
variable ¥ and probability kernel k such that P[X;|Y]| = x(Y)
a.s. for all j > 1. Note that the probability kernels underlying
the factorization are all versions of one another.

Exchangeable sequences are models for homogeneous
data sets and serve as building blocks for statistical models
with more interesting dependency structures [1]. Conditional
independence and exchangeability are also central to prob-
abilistic programming [2]. Infinite exchangeable sequences
arise naturally in functional probabilistic programming lan-
guages. Indeed, any finite sequence of evaluations of a closure
is a prefix of some infinite exchangeable sequence. The
sequence is even manifestly conditionally i.i.d.: conditioning
on the closure itself, every evaluation is independent and
identically distributed.

The more interesting phenomenon is the existence of
(potentially stateful) probabilistic code with the property
that repeated evaluations produce an exchangeable sequence
yet no existing variable renders the sequence conditionally
i.i.d. Exchangeability, nevertheless, licenses a programmer
or compiler to commute and even prune these repeated
evaluations (see, e.g., [3]). These types of transformations
are central to several probabilistic programming systems,
including Church [4] and Venture [5].

As described in [6], a fundamental question for probabilis-
tic programming is whether or not support for exchangeability
is in some sense necessary on the grounds of efficiency
or even computability. By de Finetti’s theorem, an infi-
nite exchangeable sequence of random variables X, X>, ...
admits a representation X; = f(0,§;) as., for all j > 1,
where f: [0,1] x [0,1] = R is a measurable function and
0,&1,&,,... are i.i.d. random variables, uniformly distributed
in [0,1]. Clearly, there are many such functions f. On the
other hand, as outlined above, any way of representing f
yields a way of representing the conditional independence
underlying the sequence Xi,X>,..., and so it is natural to
ask when some such f is computable. Indeed, it suffices to
establish the computability of the distribution of the random
probability measure v = P[f(6,&;) € -|0]. This question
was studied in the setting of exchangeable sequences of real
random variables in [7], which established the computability
of the distribution of v, and showed that it was even uni-

formly computable from the distribution of the exchangeable
sequence, yielding an effectivization of de Finetti’s theorem
that acts like a program transformation.

Here we study a generalization of de Finetti’s theorem
to two dimensions, and in particular, the binary symmetric
case of the Aldous—Hoover theorem for two-dimensional
jointly exchangeable arrays. Our focus will be on the
computability of various representations of the distribution
of these two-dimensional arrays, with a special emphasis
on the representation of graphons, which can alternatively
be viewed as either sampling representations or probability
kernel representations, and thus as representations of the key
conditional independences underlying an exchangeable array.
(The function f(0,-) is a one-dimensional analogue of a
graphon. For more details on graphons and exchangeable
arrays, see [8] and [9], respectively.) The situation here is
more complicated, and depends on the choice of metric.
Several of the standard metrics are computably equivalent to
each other, but we find that one natural way of expressing the
relevant measurable object — corresponding to the so-called
edit distance — is not computable from the distribution of
the exchangeable data itself, unlike in the one-dimensional
case. This mapping is possible using the halting problem 0’
as an oracle, and we provide an example showing that this
dependence is necessary. On the other hand, for a natural
subclass, the so-called random-free case, one can recover
the graphon in the edit distance metric from the distribution
of the array.

In the case of computable distributions on binary sym-
metric exchangeable arrays, all these results fall short of
establishing that some graphon is computable on a measure
one set of points. In fact, one cannot obtain such representa-
tions in general. We show that, in the case of computable
distributions on arrays, there need not be any graphon
generating the array that is almost-everywhere continuous,
revealing a topological impediment to the computability of
certain sampling representations.

It follows that the two-dimensional setting is fundamen-
tally different from the one-dimensional setting. There need
not be a computable representation of an exchangeable array
that exposes the conditional independence inherent in the
exchangeable array, even if the exchangeable array itself has
some computable representation. In some special cases, we
can compute the graphon outside a set of arbitrarily small
measure, even though we cannot compute the graphon outside
a null set. This constitutes a weaker representation of the
conditional independence, which could be useful for certain
approximation schemes. Our results suggest that probabilistic
programming languages may need to have special support
for probabilistic symmetries, such as exchangeability in the
case of arrays.

We work within the standard Turing-machine-based “bit-
model” [10] for computability and complexity over the reals
and other metric spaces, using essentially the computable
analysis formulation provided by the Type-Two Theory of
Effectivity [11], [12]. (For details, see Section 4.) Uniform
versions of our results could be compactly described using
Weihrauch degrees [13]; however, we have chosen to give



more elementary statements in order to reach a wider
audience.

2. Background and summary of main results

An (infinite) array (X;;)ij>1 of (real-valued) random
variables is (jointly) exchangeable when, for all » > 1 and
all permutations o: {1,...,n} = {1,...,n},

Xih<ij<n = Xo(i),o(j)1<i,j<n-

A result due to Aldous [14] and Hoover [15] characterizes
the distributions of all such arrays.

Theorem 2.1. An array (X; ;)i j>1 of random variables is
exchangeable if and only if there exists a measurable function

£:[0,1]* = R such that, for all n> 1,
(Xij)i<ij<n = (f(UO;UhUjaV{i,j}))151'71'5" ()

where Uy, U, ..., Vy; jy, for i, j > 1, are independent and iden-
tically distributed random variables, uniformly distributed

on [0,1].

We call any such function f an Aldous-Hoover map
for the array. The Aldous—Hoover map has a close con-
nection to the representation of the conditional indepen-
dences implied by (x): the array of random variables is
conditionally independent given UO,U,-,V{L s for i,j > 1;
and, given Up,Uy,Uy,Viy jry, the entry Xy j is conditionally
independent of the remainder of the array and U,V j,
for i,j > 1, where i # i’ and j # j'. Note that the U and
V variables are i.i.d., and so the key to the representation
of the conditional independences here is the probability
kernel k satisfying P[Xy »|Uo,Uy,Uj] = k(Up,Uy,Uj) as.
for all i/, j/ > 1. Therefore, any Aldous—Hoover map f is a
sampling representation of k and thus the core component
of the sampling representation of the array’s conditional
independences.

A very basic question is the following: What is the
relationship between the complexity of the distribution of
the array and the function f?

One significant complication is the fact that such
a function f is not unique. Indeed, for any triple
of measure-preserving maps ¢,¢’,¢”: [0,1] — [0,1],
the function g: [0,1]* — R given by g(a,b,c,d) =
F(9(a),9'(b),9'(c),9”(d)) is also an Aldous-Hoover map
for the array. It would seem natural to define the complexity
of the conditional independence in terms of the class of
Aldous—Hoover maps for the array. As we will see, this adds
some considerable difficulties and requires more intricate
arguments.

Note that any two Aldous—Hoover maps that differ on
a measure-zero set induce the same distribution on the off-
diagonal array entries. To simplify this presentation, we
restrict attention to the case of exchangeable arrays with
zero diagonal.

We now introduce precise notions of computability and
samplability from the bit-model. These will cohere with
the notion of a computable pseudometric space that we

describe in Section 4. Recall that a partial function F:C
{0,1}N — {0,1}" is computable when there is an oracle
Turing machine such that, for every point x in the domain
of F, if the oracle tape is set to x, the machine eventually
outputs every finite prefix of F(x) in finite time. Formally,
a representation of a space S is a partial surjection ps:C
{0,1} — . Representations then give rise to notions of
computability on S: A point x in the domain of pg is a name
for its image ps(x) in S. A point s € S is computable when
it has a computable name. A partial multi-valued function
f:C€ 8§ =T is computable relative to representations pg and
pr., respectively, when, for some computable partial function
F:C {0,1}N — {0,1}Y, we have pr(F(x)) € f(px(x)) for
all x in the domain of f o ps. Informally, representations
provide a specification of points in terms of approximations
of increasing accuracy; computable functions are ones for
which we can compute the output to ever greater accuracy
as we obtain more accuracy on the input, potentially given
the promise that the point lies in a distinguished subset.

We say the distribution of an S-valued array X is sam-
plable when there exist functions f,: [0,1] — §"*", forn > 1,
that are (uniformly) computable (as partial functions) on
some set of (Lebesgue) measure one (relative to a canonical
representation of [0,1] and some representation of S, and
then its products canonically) such that, for every n > 1,
for any uniformly distributed element U in [0, 1], the value
fn(U) has the same distribution as the initial n x n subarray
of X. Informally, the functions f;, instruct us how to generate
a sequence of approximations that converge with probability
one to a random variable with the same distribution as X.

In the remainder of this section, we make reference to
computability on various represented spaces. Standard spaces
like the real numbers have canonical representations, which
in turn induce representations of the space of distributions
on standard spaces. (For details, see Sections 3 and 4.)
Another space that has a canonical representation is the
space of equivalence classes of L'-integrable functions from
a measured space into the reals.

We can now refine our original question. If the distribu-
tion of some exchangeable array of real random variables
with zero diagonal is samplable, what does this imply about
the complexity of the Aldous—Hoover maps? Namely, given a
samplable exchangeable array, is some Aldous—Hoover map
f for the array computable? In particular, given a computable
such f and n > 1, we could generate the principal n x n
subarray (up to distribution) by the following canonical
sampling process:

1) Sample Uy, U;, Vy; jy for 1 <i < j <n, independently
from the uniform distribution on [0, 1].

2) Compute X; ; = f(Uo,U;,U;,Vy; jy ), where f is im-
plemented, by hypothesis, by some computable
subroutine.

The syntactic structure of this canonical sampling process
exposes the conditional independences, in a way that is
amenable to program analysis. In fact, we will show that
there may not be such a computable f, and so we will not
always be able to computably generate the array in this way.



An important special case of exchangeable arrays is the
class of ergodic ones; ergodicity of an exchangeable array is
equivalent to one of its Aldous—Hoover maps not making use
of the first input. Every symmetric binary exchangeable array
with zero diagonal is the adjacency matrix of some random
undirected graphs with vertex set N whose distribution is
invariant to every permutation of the vertices. For the ergodic
such arrays, Aldous—Hoover maps can be simplified to
structures known as graphons. While this section’s summary
of the paper’s main results uses the language of Aldous—
Hoover maps, the remainder of the paper is formulated in
terms of graphons and invariant measures on the space of
undirected graphs, a setting in which some of the rigorous
statements are cleaner to state.

A graphon is a symmetric measurable function
W: [0,1]> = [0,1]. Every graphon W induces an ergodic
symmetric binary exchangeable array X with zero diago-
nal via the {0,1}-valued Aldous—Hoover map f satisfying
f(w,x,y,z) = 1 if and only if x #y and z < W(x,y). In the
other direction, any f that satisfies W (x,y) = [ f(w,x,y,z)dz
and f(w,x,x,u) =0 for almost every w,x,y,u € [0,1] is an
Aldous—Hoover map for X. It is straightforward to show
that every Aldous—Hoover map f for X is computable as a
point in L! if and only if the graphon W is computable with
respect to the d; pseudometric that we define in Section 3.
The key fact linking the corollaries of this section with the
theorems proved in the rest of the paper is Proposition 4.5 (b),
which implies that W is computable with respect to the
0g pseudometric if and only if the distribution of X is
computable.

We now highlight the four main results of our paper.

The following key result shows that there are (zero-
diagonal) exchangeable arrays that can be generated by
programs but not according to the canonical sampling process,
on account of no program being able to implement any of
its Aldous—Hoover maps.

Corollary 2.2 (of Theorem 5.3). There exists a samplable
exchangeable array with zero diagonal such that none of its
Aldous—Hoover maps are computable on a measure one set.

This result presents a clear algorithmic barrier to rep-
resenting conditional independence. Unlike many results
pertaining to noncomputability, this result does not arise
from a routine coding argument involving a noncomputable
set such as the halting set. The obstruction here is, in fact,
topological: Any Aldous—Hoover map that is computable
on a measure one subset of [0,1]* (which therefore yields a
samplable array via the canonical sampling process) must
be continuous on a measure one subset of [0,1]*. We
demonstrate that there are samplable exchangeable arrays
for which every Aldous—Hoover map is discontinuous on
a set of positive measure. Given our particular example of
such an array, the verification that it has this property is
straightforward, if technical. However, the existence of such
an example is rather surprising.

Corollary 2.2 has an interesting implication for functional
probabilistic programming languages, discussed in more
detail in [6]. The result implies that, in order to exploit the

latent conditional independence of an exchangeable array,
compilers cannot rely upon that structure being apparent
in the syntax of the program. In other words, an array
of random variables sampled according to the “program”
given by the canonical sampling process is manifestly a
collection of conditionally independent random variables.
However, by Corollary 2.2, not every Aldous—Hoover map
is computable on a measure one set, and so there may
be no such program. In order for the compiler to take
advantage of the exchangeable structure, the compiler must
either recognize that the array is exchangeable by some
program analysis or the language must provide the user with
the means to specify these symmetries.

Given Corollary 2.2, it is natural to consider weaker rep-
resentations. Because every Aldous—Hoover map is bounded,
it is also integrable. Results from algorithmic randomness
imply that, as a point in the space of L'-integrable functions,
an Aldous-Hoover map f for an exchangeable array X is
computable only if, for every k € N, the map f is computable
on a set of measure 1 —27%; if the distribution of X is
computable, then this condition is also sufficient (see, e.g.,
[16]).

This weaker notion of computability allows us to sidestep
the obstruction underlying Corollary 2.2. However, a new
obstruction arises, this time tied to computability rather
than continuity. Using a coding argument, we establish the
following lower bound.

Corollary 2.3 (of Theorem 7.1). There exists a samplable
exchangeable array with zero diagonal, one of whose Aldous—
Hoover maps f is continuous on a measure one set, such that
every name for an Aldous—Hoover map as an L' function
computes the halting problem.

We are also able to prove a matching upper bound,
making use of the weak regularity lemma that provides
bounds on how well a small graph can approximate a
large graph (in the sense of approximately preserving the
distribution of its random subgraphs).

Corollary 2.4 (of Theorem 6.2). Every ergodic symmetric
binary exchangeable array with zero diagonal that is sam-
plable has some Aldous—Hoover map that is computable as
a point in L' using the halting problem as an oracle.

While this does provide a theoretical upper bound on the
complexity of the Aldous—Hoover map, it is a noncomputable
one, and hence unsatisfying in practice.

In fact, we can provide positive results (with no oracle)
for an important subclass. In particular, an Aldous—Hoover
map can be computed for those ergodic symmetric binary
exchangeable arrays known as simple in the exchangeabil-
ity literature [17], and which correspond to random-free
graphons [18, §10]. These arrays are those that have an
Aldous—Hoover map that depends on neither its first nor last
variable.

Corollary 2.5 (of Theorem 6.4). Every ergodic symmetric
binary exchangeable array with zero diagonal that is sam-
plable and simple has some Aldous—Hoover map that is



computable as a point in L.

While restricting attention to simple arrays may seem
limiting, in fact their distributions can approximate those of
arbitrary ergodic exchangeable arrays in a sense stronger than
weak convergence [17, Theorem 2]. Therefore, Corollary 2.5
is a positive result for all exchangeable arrays arising
from graphons, provided we are willing to admit some
approximation error.

3. Graphons and invariant measures on graphs

In this section we provide the basic definitions of and
results about the two main objects of interest in this paper,
graphons and invariant measures on graphs. Let A denote
Lebesgue measure on R (though for notational convenience,
we will often use A to also refer to Lebesgue measure on R2,
etc.). For n € N, write [n] :={0,...,n—1}. All logarithms,
written log, will be in base 2.

3.1. Graphons

We will formulate most of our results in terms of
graphons, both for concreteness and simplicity of notation.
In this subsection we summarize the standard notions that we
will need. For more details on graphons, their basic properties,
and notation, we refer the reader to [8, Chapter 7], from
which most of the definitions in this subsection are borrowed.
In many cases, analogous notions and results were developed
earlier in terms of exchangeable arrays; for details on this
connection and the history, see [19] and [20].

Definition 3.1. A graphon is a symmetric measurable
function W: [0,1]*> — [0,1]. Let W, denote the set of all
graphons.

Three classes of graphons play a special role in this
paper.

Definition 3.2. A graphon G is random-free if it is {0,1}-
valued a.e., in other words, when A(G~'({0,1})) = 1.

Definition 3.3. Let 7 be a topology on [0,1]. A graphon G
is almost-everywhere (a.e.) continuous with respect to 7
if there is a set X C [0,1]? such that (X) =1 and G|x is
continuous with respect to 7 |x.

Definition 3.4. A graphon G is a step function if there
is a (finite) measurable partition P of [0,1] such that for
every pair of parts p,q € P, the graphon G is constant on
p X g. Write S to denote the class of step functions whose
underlying partition divides [0,1] into some finite number
of equally-sized intervals, and whose range is contained in
the rationals. Write Sy to denote the subset of its random-
free graphons. Each of S and &y admits a straightforward
computable enumeration.

One can associate to each finite graph (on [n] for some
n > 1) a random-free step function graphon, as we now
describe, such that the space of graphons is the completion

of the finite graphs (embedded this way) under an appropriate
pseudometric on finite graphs.

Definition 3.5. Let G be a graph with vertex set [n], for some
n > 1. Define the step function graphon Wg: [0,1]% — {0,1}
to be such that W (x,y) = 1 if and only if there is an edge
between |nx| and |ny] in G. In other words, Wg is equal
to 1 on [i/n,(i+1)/n) x [j/n,(j+1)/n) if there is an edge
from i to j, and O otherwise. Observe that Wi € Sp.

We will use three key pseudometrics on the space of
graphons. We begin by describing the cut norm ||-||5, which
will allow us to define dj and then 8-, the latter of which
is closely related to subsampling. The third pseudometric is
di, more closely related to edit distance and the L' norm.

Definition 3.6. The cut norm of a symmetric measurable
function F: [0,1]> — [—1,1] is defined by

|F[lo:=sup
5,7C[0,1]

/ F(x,y)dxdy‘
JSXT

where S and T range over measurable sets. For graphons U
and W, define do(U,W) := ||U —W||o.

It is straightforward to verify that ||-||g is a norm on W),
and that dg is a pseudometric on W.

As we will see, this cut norm is too coarse for many of
our purposes.

Definition 3.7. The L' norm of a symmetric measurable
function F: [0,1]*> — [—1,1] is defined by

1F]l = JIF (x,y)| dxdy.

For graphons U and W, define d;(U,W) := ||[U —W||;.

It is a standard fact that the L! norm is a norm on W,
and that d; is a pseudometric on W.

While the cut norm induces a coarser topology than the
L' norm does, they do agree on the notion of norm zero. The
following easy lemma follows from the fact that if |[W||g =0
then W =0 a.e.

Lemma 3.8. If W is a graphon, then |W||; =0 if and only
if [Wlo=0.

This lemma implies that the pseudometrics d; and d can
be thought of as metrics on the same quotient space, namely
Wo/{(G,H) : d\(G,H) =0}, even though the metrics they
induce on this space are very different.

As we will see in §3.2, there is a standard way to associate
to each graphon an invariant measure on countable graphs
and given two graphons we would like to have a condition
equivalent to the corresponding invariant measures being
the same. However, it is easy to see, by applying a non-
trivial measure-preserving transformation to any non-constant
random-free graphon, that there are graphons which give
rise to the same distribution but which are very far in either
dy or do. Hence we will need a notion of distance yielding
an even coarser topology, which we now define.



Definition 3.9. Let W be a graphon and let ¢: ([0,1],1) —
([0,1],A4) be a measure-preserving map. Define W? to be
the graphon satisfying

We(x,y) =W(o(x),0(y))

for all x,y € [0,1].
Definition 3.10. For graphons U and W, define
6|:J<UaW) = Hq])f dD(Uan))a

where the infimum is taken over all measure-preserving maps
of ([0,1],4) to itself.

The following standard result will be important when we
consider the relative computability of the representations of
graphons induced by various metrics.

Lemma 3.11. The set S is dense in (Wy,d,), and its subset
Sp is dense in (Wo,dn) and Wo, dn).

Proof. The density of step functions in d; is a standard
measure-theoretic fact. The density of Sy in 85 follows from
[8, Theorem 11.52]. This implies that

{W?:W eS8 and ¢ is a measure-preserving map }

is dense in dn. But for every W € Sy, measure-preserving
map ¢, and € > 0, there is an element V € Sy such that

do(We)V) <e.
Hence Sy is also dense in dg. O
We will later need the following definition.

Definition 3.12. A graphon W is twin-free if for each pair
of distinct points x,y € [0, 1], the functions z — W (x,z) and
7+ W(y,z) disagree on a set of positive Lebesgue measure.

3.2. Invariant measures on graphs

Invariant measures on graphs with underlying set N are
the main object of study in this paper. In the probability
theory literature, one often studies exchangeable arrays
rather than their distributions, but here we focus on their
distribution as we will be interested in the measures rather
than the random variables, and so that we can avoid certain
technicalities and notational difficulties.

Definition 3.13. Let G C {0, I}N2 denote the space of adja-
cency matrices of symmetric irreflexive graphs with underly-
ing set N. A probability measure y on the space G is called
an invariant measure on graphs if y(A) = u(o~'(A)) for
all Borel A C G and all permutations ¢: N — N.

We will use the term invariant measure to refer to
invariant measures on graphs.

An important subclass of the invariant measures are those
that are extreme.

Definition 3.14. An invariant measure y is extreme if there
do not exist distinct invariant measures v and 7 such that
u=ov+(1—a)r for some a € (0,1).

In our setting, the extreme measures coincide with the
ergodic ones (with respect to permutations of N).

Graphons naturally give rise to extreme invariant mea-
sures on graphs, via the distribution of the countably infinite
random graph obtained by sampling from the graphon, as
we now describe.

Definition 3.15. Let W be a graphon and let S be a countable
set. Let (§;)ies be an i.i.d. collection of uniform [0, 1]-valued
random variables. Consider the random graph G(S,W) with
vertex set S where for all distinct i, j € S, there is an edge
between i and j independently, with probability W({;, ;).
For n > 1, we write G(n,W) to refer to G([nl, W). When
H is a finite graph, we write G(S,H) to refer tog G (S, Wy).
Finally, let G(S,W) denote the distribution of G(S,W).

For 0 < p < 1, if W is the constant graphon W = p, then
G(N,W) is the distribution of an Erd6s-Rényi random graph.
The following result is standard.

Proposition 3.16 ([8, Theorem 11.52]). If W is a graphon,
then G(N,W) is an extreme invariant measure on graphs.

Conversely, every extreme invariant measure arises from
a graphon.

Proposition 3.17 ([8, Theorem 11.52]). If 1 is an extreme
invariant measure on graphs then there is some graphon W
such that G(N,W) and W are the same distribution.

It is then natural to ask when two graphons give rise to
the same invariant measure.

Proposition 3.18 ([8, Theorem 13.10]). For graphons U
and W, the following statements are equivalent:

1) G(N,U) and G(N,W) are the same distribution;

2) &g(U,W)=0; and

3) there are measure-preserving maps @,y : [0,1] —
[0,1] such that U® =WV a.e.

When any of these equivalent statements holds, we say that
U and W are weakly isomorphic.

We now describe a natural metric on the space of invariant
measures.

Definition 3.19. Let £ be the collection of extreme invariant
measures, let 4 € £, and let F be a finite graph on [n]. Define
tind(F,1t) == u({G € G : G|, = F}). Fix an enumeration
(F))ien of finite graphs with underlying set [n] for some
n>1. For u,v € &, define

22 ’tmd E,,U) tind(EHv)‘-
ieN

dy (1, Vv)

The following is standard.

Lemma 3.20. The space (£,d,,) of extreme invariant mea-
sures is a compact Polish space with the topology of weak
convergence. Further,

S :={G(N,G) : G is a finite graph}

is a dense subset.



Note that Sj also admits a straightforward computable
enumeration.

The previous lemma tells us that we can approximate an
extreme invariant measure arbitrarily well by measures which
come from sampling graphons induced by finite graphs. A
natural question is whether it is possible to take an invariant
measure and find a (possibly random) sequence of finite
graphs whose corresponding graphons almost surely converge
to the invariant measure we started with. This is possible,
as the following result states.

Lemma 3.21 ([8, Corollary 11.15]). Suppose U is a graphon.
Then <Q(N,Q(n,U))>n>l is a random sequence of extreme

invariant measures that almost surely converges in (€,d,,)
to G(N,U).

4. Notions of computability for graphons and
invariant measures on graphs

There is considerable flexibility in how the space of
graphons can be represented, and each representation gives
rise to a corresponding notion of computability for graphons.
Several representations arise naturally in our study of
graphons, and they give rise to distinct notions of com-
putability on the same underlying space. In this section, we
describe several representations for the space of graphons
and the space of invariant measures on graphs, and present
some of the basic relationships between them.

4.1. Computable pseudometric spaces

A focus of this paper is represented spaces that reveal
the metric structure, and so we will work with a class
of represented spaces known as computable pseudometric
spaces, a relaxation of the notion of a computable metric
space in computable analysis (see, e.g., [12]).

Definition 4.1. A computable (complete) pseudometric
space consists of a triple (M,d, (s;);en) such that

e (M,d) is a complete pseudometric space,

o (sj)ien is dense in (M,d), and

o the sequence (d(s;,5j))i<jen is a computable se-
quence of real numbers.

Definition 4.2. Suppose (M,d, (s;)icn) is a computable pseu-
dometric space. A rapidly converging Cauchy sequence is
a sequence (sy;)jen for which d(sy;,sx,) < 27/ for j<leN.

A rapidly converging Cauchy sequence is called a d-
name for the limiting value lim,,_,c. 5¢,. We say that (skj> jeN
is computable in d if the sequence of natural numbers
(kj) jen is computable, and that an element s € M is com-
putable if it has some d-name that is computable. (These
notions relativized to an oracle are defined in the obvious
way.)

The computational strength needed to produce a d-name
provides a measure of the complexity of the corresponding
element of the represented space. Roughly, a name for
an element of the pseudometric space is a sequence of

approximations that converges with rate n — 27"". Note
that the choice of this rate is somewhat arbitrary, since
given a sequence that converges with some other computable
rate, one can computably “thin out” the sequence so that it
converges at the rate we have chosen.

The pseudometric spaces we have considered so far can
be straightforwardly made into computable pseudometric
spaces using the computable enumerations of dense subsets
we have identified.

Lemma 4.3. The following are computable pseudomet-
ric spaces: Wy,d1,S); Wo,dn, So); Wo, 8a,80),; and
(€,dw, Sp)-

The quotient (by identifying points at distance zero)
of every computable pseudometric space (M,d) can be
regarded as a represented space, whose names are (encodings
of) d-names, and the notions of computable points and
functions agree. In this paper we are interested in the
relative computability of names for graphons and invariant
measures considered as elements in these various computable
pseudometric spaces.

4.2. Computable relationships between representa-
tions

In this section we want to consider the computable
relationship between various representations for graphons
and exchangeable arrays. In order to do this we need a notion
of a computable function between two pseudometric spaces.

Definition 4.4. Suppose (M,d,S) and (N, f,T) are com-
putable pseudometric spaces. We say a map g: M — N is a
computable function, or is simply computable, if there is
a computer program e such that whenever K := (k;) jey is
an index sequence for a d-name of an element a then {e}X
outputs an index sequence for an f-name of g(a).

Suppose h: N — M is a computable map. We say that a
computable map g: M — N is a computable equivalence
witnessed by h if d(x,h(g(x))) =0 for all x € M and
f(v.g(h(y))) =0 for all y € N. In this case we say that
the spaces are computably equivalent.

Let k: M — N be a surjective function. A com-
putable map h: N — M is a computable section for k if

F (0, k(h(y))) =0 for all y € N.

In other words, a function is computable if there is an
algorithm that takes a name in one space and computably
transforms it into a name in the other. A computable
equivalence provides a uniform method for transforming a
name in one space to a name in the other and vice-versa. Note
that a computable equivalence induces a bijection between the
corresponding metric spaces obtained by taking the quotient
by distance 0 on each side.

We will consider computable sections in the case where
the underlying sets M and N are the same and k is the
identity function. In this case, a computable section takes an
f-name for a computable element of N and returns a d-name
for a (possibly different) computable element of M such that



(N, f,T) cannot “distinguish” the points, in the sense that
they have f-distance 0.

Consider the following notions of computability for an
invariant measure fi:

(1) There is a computable d,,-name for .

(2) There is a graphon W with a computable d5-name
such that G(N,W) = u.

(3) There is a graphon W with a computable dg-name
such that G(N,W) = u.

(4) There is a graphon W with a computable d;-name
such that G(N,W) = u.

The next result establishes relationships between these
four notions, which yield the implications in Corollary 4.6.
In fact, as we will later see, these implications are all that
are possible.

Proposition 4.5. The following functions between pseudo-
metric spaces are computable:

(@) The map o: (€,d,) — (Wo,0n) that takes G(N,W)
to W (up to weak isomorphism).

(b) The map B: Wy, 00) — (€,d,) that takes W to
G(N,W).

(c)  The identity map id: Woy,do) — (Wo, 60).

(d)  The identity map id: Wy,d1) — Wo,dn).

Furthermore, a is a computable equivalence witnessed by
B, and vice-versa, and there is a computable section of the
identity map (c). Finally, (a), (b), and (d) induce bijections
on the corresponding metric spaces.

Proof. The d;-distance between two graphons is at least their
dr-distance, and so any d;-name is a do-name. Similarly, any
do-name is a dg-name. Hence (c) and (d) are computable.

Now to show (b) we want to show that if (W, )nen C
S is a rapidly convergent Cauchy sequence in S then
(G(N,Wg, ))nen is a rapidly convergent sequence in &.
Given a finite graph F and graphon W, write fj,q(F,W)
for fina(F,G(N,W)). By the Counting Lemma ([8, Exer-
cise 10.30]), for any graphons U and V and finite graph F
with k vertices, we have

|tina(F,U) — tina(F,V)| < 4(3)do(U, V).

For any measure-preserving map ¢@: [0,1] — [0, 1], we have
tind(F, V) = ting(F,V?). Therefore

|tind(FvU) 7tind(F7V)| < 4(5) SD(va)

holds by Definition 3.10. Hence given a d5-name for U we
can computably thin out its entries to form a d,,-name.

To show (a) we need the following Chernoff bound to
obtain a dg-name given the distribution of an exchangeable
array. As shown in [8, Lemma 10.16], for each k € N, with

probability at least 1 —e*/(21°¢K) " we have
22
SD(U’WgA(kU)) < \/@'

As G(k,U) depends only on the distribution of the induced
exchangeable array we can find an element Gj which is

within % in & of Wg, ;) with probability at least 1 —
e k/(2logk) " and so in particular
44

0q(Gy,U) < Tog

:

This therefore lets us create a sequence (Gp)ien such that
(WG, )ken is a 8o-name for any graphon with the same
distribution as U.

To establish the computable equivalences in (a) and (b),
we use the fact that convergence in 8 is equivalent to conver-
gence of the corresponding random graphs (Theorem 3.18).
This also shows that (a) and (b) induce bijections on the
corresponding metric spaces.

We now show that (c) has a computable section. Assume
we have a 8o-name of U, and know a graph G, such that

5a(Wg,,U) < 2@+,
We will find a graph G, such that
do(Wg WGn) <45.27"

n+17

and

§3(Wa,., U) <27 @),

n+17?
This is enough to get a fast Cauchy sequence in dg. Find
H such that
8 (Wi, U) < 2~ 40,
Then
6D(WH,WG,,) < 27(22n+1) +2,(22(n+1)+1) < 2722,1.

There are graphs G, and H' both on the set [|G,|-|H|] (where
|G,| denotes the number of vertices of G,, and similarly
with H) such that

do(Wg:,Wa,) = do(Wyr, Wy ) =0,

by taking blow-ups to a common refinement. Following the
notation in [8, §8.1.3], define the quantity

(G H') := /I\nig\d[j(Wan,Wﬁ,),
G/mH/
where (A}’,, ranges over the images of G,, under permutations
of [|G,|-|H|], and similarly with H’. By [8, Theorem 9.29],
we have

- 4 4
8(G H') < > -

\/— log SD(WG517WH’) 22
Hence there is some reordering G, of H' such that

do(Wg WG;,) <45.27",

—45.27",

n+1?

Because do(Wg; ,We,) =0, we have
d\j(VV(;nJrl 7VV(;n) <45.27",

By definition, 6o(Wg, . ,, Wgr) = 0. Because do(Wyr, Wy ) =
0, we therefore have

dj(WGnJrl,U) = 5D(WG,1+1 ,H) < 2_(22(n+1)+1>’

n+17



as desired.
Finally, (d) induces a bijection on the corresponding
metric spaces, as noted in Lemma 3.8. O

We have seen there is a computable equivalence between
og-names for a graphon and names for the corresponding
invariant measure. Further, given a do-name, we can com-
putably find a dg-name for a graphon yielding the same
invariant measure. We have also seen that it is possible to
transform a dj-name to a do-name in a computable way. It
is therefore natural to ask whether there is a computable
equivalence from a dgo-name to a dj-name. As we will
see, in general there is not. This tells us that the dj-name
for a graphon contains fundamentally more computable
information than an dg-name for a graphon.

As a consequence of Proposition 4.5, we obtain the fol-
lowing relationships among the numbered notions appearing
after Definition 4.4.

Corollary 4.6. For an invariant measure [, notions (1), (2)
and (3) are equivalent, and are all implied by notion (4).

5. Almost-everywhere continuity

In this section, we describe a random-free graphon
that is computable in d; but not weakly isomorphic to
any a.e. continuous graphon. Note that this is in contrast
to the computable de Finetti theorem [7], which can be
seen as saying that in a 1-dimensional analogue of this
setting, the measurable object representing the sampler is
a.e. computable, and in particular a.e. continuous. This
provides another example of how the 2-dimensional case is
considerably more complicated than the 1-dimensional case.

The notion of a.e. continuity is sensitive to the underlying
topology of the space. Since a graphon is a function from
[0,1] x [0,1] to [0,1], it is reasonable to consider, as the
topology on the domain, the product topology with respect
to the usual topology on [0, 1]. But there are situations where
it is natural to consider graphons that are a.e. continuous
with respect to other topologies on [0,1] but are not weakly
isomorphic to an a.e. continuous graphon with respect to the
standard topology on [0, 1]. We show that our result holds
even in these more general situations, as long as the topology
on [0,1] still generates the Borel sets.

We begin by describing the construction of a random-
free graphon G, which can be thought of as a symmetric
measurable subset of [0,1]?. We have drawn this measurable
subset in Figure 1 as a black (1) and white (0) picture, with
(0,0) in the upper-left corner (similar to an adjacency matrix,
and as is common when drawing graphons).

Construction. First, draw a 2 x 2 square grid (given by
products of the intervals [0,3) and [}, 1] on each axis) and
color the 2 squares on the dzagonal black. Then on each
of the 2 off-diagonal squares, draw a 4 x 4 square grid
(similarly, from products of half-open or closed intervals)

and color the 8 diagonal squares black. Then on each of

the remaining 24 squares, draw an 8 x 8 grid and color

the diagonal black. Continue in this way, filling diagonal
squares within unfilled squares to obtain the graphon G.

This clearly describes a symmetric measurable subset of
[0,1]%, and hence a random-free graphon. (Essentially the
same graphon has independently arisen in number theory

(21])

Figure 1. The graphon G, viewed as a subset of [0,1]%.

The countable random graph induced by sampling from
G may be thought of informally in the following way, which
shows that it can be sampled in polynomial time: There is a
questionnaire with an infinite list of questions indexed by
positive integers. The nth question has 2" possible answers.
Each vertex corresponds to a person who has independently
answered each question uniformly at random, independently
from each other person. Two vertices are connected by an
edge when the corresponding people agree on at least one
answer to their questionnaires.

Lemma 5.1. The graphon G constructed above is not a.e.
continuous, has a computable di-name, and is twin-free.

Proof. The black region G~ ({1}) is clearly dense. Also the

white region G~!({0}) has measure equal to ot := 13- LR
which is positive by the following calculation:
1 37
log(=-=.~... =—Y log(1-2
og(3- 73 Z og(
e
n=1k=1 k
=1a
=Y L2
k=1"n=1
_yln
=1

~
Il
—_

So this graphon itself is not a.e. continuous, since G~!({0})
is a nowhere dense set of positive measure.

But G has a computable dj-name since one can ap-
proximate the graphon in d; with some initial stage of the



construction, as we now describe. Let G, be the nth stage of
the construction, and let f3, := [ G,dA. Then the measure of
the remaining black area yet to be added to G is (1 — &) — f3,,
a computable real that rapidly tends to 0 as n — oo,
Finally, observe that G is twin-free, as by construction,
each horizontal line gives rise to a different cross-section. [

The main result of this section is that no graphon H
weakly isomorphic to G is a.e. continuous (even with respect
to other topologies that generate the Borel sets). The key
combinatorial fact is the following.

Lemma 5.2. Let G be the random-free graphon constructed
above. Suppose X,Y C [0,1] are measurable sets such that
X x Y is contained in G~'({0}) up to a nullset. Then
AX xY)=0.

Proof. For each n € N, let X,, (respectively Y,,) be the union
of all dyadic half-open intervals of size 2~(2"~1) whose
intersection with X (respectively Y) has positive measure.
To show that A(X xY) =0, we will show by induction that
A(Xy x Y,) <47

The base case is trivial as A(Xp x ¥p) < 1. For the
inductive step, consider each dyadic square I x J where
I C X, and J C Y, are both of size 2~(3"~1). By construction,
for each sub-dyadic interval I’ C I of size 2-@"=1) there is
a corresponding dyadic interval J' C J of the same size such
that I’ x J' is a black square. If I’ is disjoint from X (up to a
nullset), then I’ C X, \ X,,+1. Otherwise, J' is disjoint from ¥
(up to a nullset), and J' C Y, \ ¥,,41; for if not, then the black
square I’ x J' intersects X X Y outside a nullset, which cannot
happen, since X x ¥ C G~ ({0}) is white. After considering
all such sub-dyadic intervals I’ we have that

A(Xs1 1)+ A(Yp1 M) < M

=A(I).
By the arithmetic—geometric mean inequality,
AM(Xng1 X Yas1) NI X J)) = A(Xg1 V) - A (Y1 NJ)

_ <7L(Xn+1 m)+)L(Yn+mJ)>2

Lty

Summing up over all such 7 xJ and using the induction
hypothesis we have

A(Xy X Yy)
e
Therefore A (X xY) =0. O

AXnp1 X Ypp1) < < 4=t D),

We may now prove the main result about G.

Theorem 5.3. Let G be the random-free graphon (which
has a computable d\-name) constructed above. Let H be a
graphon weakly isomorphic to G, and let T be some topology
on [0,1] every open set of which is a standard Borel set.
Then H is not a.e. continuous with respect to T X T.

Proof. Because G is twin-free and weakly isomorphic to H,
by [18, Theorem 8.6 (vi)] there is a measure-preserving map

y: [0,1] = [0,1] such that H = GY a.e. Hence H must be
random-free as well.

Now assume, towards a contradiction, that the map H
is a.e. continuous with respect to 7 x 7. Because ¥ is
measure-preserving,

A(GT({0}) = A (H'({0})).

Define A C [0,1] to be the set H~'({0}).

Since H is a.e. continuous with respect to 7 x T, we
have that A is a A-continuity set, and therefore its interior
(in the product topology 7 x T) is standard Borel and has
the same (positive) measure as A. Hence there is some open
set Bx C C A where B and C are T -open sets of [0,1] (and
hence are standard Borel sets) that have positive measure.

Let A(-|B) denote Lebesgue measure conditioned on B,
that is

A(ANB)
A(B)

Both A(:|B) and A(-|C) are well-defined since B and C have
positive measure. Now, let up and ¢ denote the pushforward
measures on [0,1] of A(:|B) and A(-|C) along the map .
That is, ug(S) = A(y € S|B) for all measurable S C [0, 1],
and likewise with C. We claim that pp and uc are absolutely
continuous with respect to A. Indeed, if A(S) = 0, then
Ayes) _ A(S)
ug(S) =A(y e S|B) < 2(B) ~ AB) =0.

Therefore, the supports of up and py have positive A-
measure.

Because y is a measure-preserving map, we have

(s ® uc){G =0} = m/&/}g Ligv—_gydAdA

1
= 17

A(A|B) =

where the last equality follows from the fact that H =0 on
BxC.

Now let X be the support of up and Y be the support
of Uc. Then X x Y is contained in G~'({0}) up to a nullset.
By Lemma 5.2, we have A (X xY) =0, and so one of X and
Y has measure 0, a contradiction to the fact that ug and uc
are absolutely continuous probability measures. Hence H is
not a.e. continuous with respect to 7 x 7. O

6. do-names vs. di-names: Upper bound

In Section 4 we introduced four representations for
the space of graphons and showed that the first three
are equivalent. In this section we characterize the relative
computability of the fourth representation (i.e., dj-names for
graphons). Our theorems involve encodings of the halting
set, and so we must introduce a few pieces of notation. For
e €N, let {e} denote the partial computable function N — N
given by computer program e. For n € N write {e}(n)] to



denote that this program halts on input n, and {e}(n)?1 to
denote that it does not halt. For s € N write {e};(n)] to
denote that this program has halted after at most s steps, and
{e}(n)sT to denote that it has not yet halted after s steps.
Write 0’ := {e € N : {¢}(0).} to denote the halting set.

Recall that a di-name for a point is already a dg-name for
that same point. In this section we establish that the halting
problem 0’ suffices as an oracle to computably transform a
computable dg-name to a dj-name. Further, in the random-
free case, this oracle is not needed. In the next section we
show that this is tight, in the sense that the use of 0/ is
necessary in general.

For n € N, let P, denote the equipartition of [0, 1] into
2"-many intervals of width 27". For a graphon U we write
Up, (as in [8, §7.1]) to denote the step function graphon
E[U | P, x Py], i.e., the conditional expectation of the
function U averaged on this 2" x 2" square grid.

Proposition 6.1. Let U be a graphon computable in dp.
Then (Up,)nenN is a uniformly di-computable sequence of
graphons that converges in d; to U.

Proof. Suppose (Vi) ien is a do-name for U. The conditional
expectation operator with respect to P, x P, is contractive
with respect to the cut norm [8, Proposition 14.13]. Hence
do(Up,,(Vi)p,) <do(U,Vy) for all k,n € N. We can there-
fore compute a dg-name for Up, uniformly in n.
However, because Up, is a (P, x P,)-measurable step
function, from a dg-name for Up, we can uniformly in n
compute a dj-name for Up,. Therefore, from (Vi)reny we
can uniformly in n compute a dj-name for Up,. In particular,
(Up, )nen is a uniformly dj-computable sequence of graphons
which converges in d; to U. O

Although (Up,),en converges in d; to U, it need not
converge quickly. Its Turing jump allows us to identify a
rapidly converging subsequence, yielding the next theorem.
As we will see in Section 7, the Turing jump is necessary.

Theorem 6.2. Let U be a graphon. Then from the Turing
Jjump of any do-name of U, we can compute a dy-name for
it. In particular, if U has a computable do-name, then it has
a O'-computable d,-name.

Proof. Let X be some dp-name for U. Then by Proposi-
tion 6.1, using X, uniformly in n we can compute a d;-
name for Up,. Since (Up, )nen converges in dj, its limit is
computable in d; from the Turing jump of any sequence of
dy-names for (Up,)nen. Hence we can compute a dj-name
for U from the Turing jump of X. O

It is natural to consider the case of random-free graphons,
especially since the ability to flip between greyscale regions
and black-and-white ones will be key to the lower-bound
proof in Section 7.

In fact, in the random-free case, computable convergence
in dp is equivalent to computable convergence in dj, as we
now show.

Lemma 6.3. If (U,),en is a uniformly di-computable se-
quence of graphons that converges to a random-free graphon
U, then U has a computable d\-name.

Proof. The key idea is that since U is 0-1-valued a.e., the
value d; (Uy,U) is computable. This is because given a square
in P, x P,, the Lebesgue measure of those points (x,y) in
the square such that U(x,y) =1 is equal to the value that
U, takes there, and this suffices to compute the L; norm of
the difference on that square. For example, for the constant
function Uy, if Uy = p, then

d{(Up,U)=A{U=0}-p+A{U=1}-(1—-p)
=(—p)p+p(1—p)=2p(1-p).

Since (Uy),en is a dj-name for U, and since we can
compute each quantity d, (U,,U), we may find a subsequence
(U, )nen such that dy(U,,U) < 27". From this sequence
(U, )nen we can find a computable d;-name for U. O

This implies that there is a computable procedure for
translating di-names to do-names in the case of a random-
free graphon.

Theorem 6.4. Let U be a random-free graphon computable
in do. Then U is computable in d;.

Proof. Since U is computable in d, by Proposition 6.1
the sequence (Up,),en, Which converges to U in dj, is
a uniformly dj-computable sequence of graphons. Then,
because U is random-free, we can compute a dj-name for
the limit of this sequence by Lemma 6.3. O

We have just seen that for random-free graphons, unlike
the general case, d; and do-names can be computably trans-
formed into each other. One might therefore wonder whether
one can computably determine that a graphon is random-free.
In fact, it is not possible to computably recognize when a
graphon is random-free, as we now demonstrate. On the
other hand 0’ does allow us to recognize this.

Proposition 6.5. The collection of di-names for random-
free graphons is a H(l) class. Further, there is a uniformly
dy-computable sequence of graphons {V,}.cn such that V,
is not random-free if and only if e € 0.

Proof. Recall that W(1 —W) > 0 a.e. for a graphon W,
as it takes values in [0, 1]. Also, W is random-free if and
only if [W(1—W)dA =0. (See, e.g., [18, Lemma 10.4].)
Therefore, given a dj-name for a graphon, we may compute
JW(1—W)dA, and hence by noticing when this quantity is
positive, we may enumerate the dj-names of the non-random-
free graphons. Hence the d;-names of random-free graphons
form a H(l) class.

For s,e € N, let U] be the constant function 27° if
{e}4(0)1, and U} be the constant function 2% if k <s and
minimal with {e};(0)]. Observe that for each ¢ € N, the
sequence (Uj)scn is a computable di-name for a graphon
V, that is not random-free if and only if e € 0. O



In particular, there is no computer program that, given a
di-name of a graphon, correctly asserts whether or not the
graphon is random-free.

Having shown that every graphon with a computable
dn-name has a dj-name that is 0’-computable, one may ask
if this is tight, i.e., if 0’ is necessary. We have just seen that
this is not tight in the random-free case, and so any witness
to the necessity of 0/ must not be random-free. Next, in
Section 7, we provide such an example.

7. do-names vs. di-names: Lower bound

We have just seen that using 0’ we can compute a d-
name of a graphon given a computable do-name for it. We
now show that this is tight in the sense that there is a graphon
that is computable in dm such that 0’ is computable from any
di-name for a graphon weakly isomorphic to it. Furthermore,
we may take this graphon to be a.e. continuous.

Theorem 7.1. There is an a.e. continuous graphon Z that
is computable in do, such that if V is weakly isomorphic to
Z then any d\-name for V computes the halting problem (/.

Proof. For each n € N, define the open interval A, :=
(1—27",1—2-("*D)_ The graphon Z will take the value
zero outside the block-diagonal |J,cn(A, X A,). Also, for
eachneN, let £, :=1—-2"FD Jet p, :=1—2-1+2) and

let my, := [”%, so that

O<lo<my<rg<tli<m<r <..<l.

Define the constant graphon H* = 1.

= 5. Because H" is
computable in dm, for each s € N we can computably find
a random-free step function graphon Gi € & such that
|[H* —G%||o< 2. Foreach e e N, let 1,: [0,1] — [¢,,r.] be
the unique increasing linear bijection. Note that lg(%) = M.
Let G.s:=1.0Gy and H, :=1,0H"*. Observe that

HHe*Ge,S”D < ”H* *GT”D <275,

Now for s € N, define Z; to be the graphon that is 0
outside of |J,« (A, x A,) and for each e < s is equal to
the scaling to fit A, x A, of the following graphon K, ; on
[0,1] x [0,1]:

K. H, if {e}s(0)1, and
“*"" ) Gey if t <s is minimal such that {e},(0)] .
Note that
1Zs = Zstallo <27+ Z A(An x Ap)
n>s
< 275‘ + 27(&4»1) . 27(54*1)
< 27s+1.

Clearly the graphons K, ; are uniformly computable in dp,
and so the sequence (Z;)yen is a computable d-name. For
x,y € [0, 1], define

Z(x,y) = lim Zy(x,y)

when it is defined, and O otherwise. Note that Z is a limit
of the sequence (Z;)cn, and it is a.e. continuous, as it is
piecewise constant (i.e., a step function with countably many
steps).

Note that for each n € N, we have

A’(Zil{gnvmn;rn}) = A/(An XAn) = 272(”+1>

by construction, as each K, ; only takes values among ¢,
my,, or r,. For any graphon W define the set

Xw:={xe[0,1]: AW x) > 0}.

Note that for any V weakly isomorphic to Z, by Theorem 3.18
condition (3) we have Xy = X7. Further, as

{fmmmrn} m{e‘mmp,rp} =0

for p # n, from a dj-name for V we can compute the
countable discrete set Xz. But m, € X if and only if {e}(0)T,
and so Xz computes 0'. O

We note that by taking the direct sum of the graphon G
constructed in Section 5 with the graphon Z that we have
just constructed, we may obtain a 0'-computable d|-name
for a graphon for which no weakly isomorphic graphon is
a.e. continuous and from which any d;-name computes 0’
Namely, consider Z scaled by % placed on [0, %]2 along with

G scaled by % placed on [1,1]2.
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