
Feedback Turing Computability, and
Turing Computability as Feedback

Nathanael L. Ackerman
Dept. of Mathematics

Harvard University
Cambridge, MA 02138

Email: nate@math.harvard.edu

Cameron E. Freer
Computer Science and AI Lab

Massachusetts Institute of Technology
Cambridge, MA 02139
Email: freer@mit.edu

Robert S. Lubarsky
Dept. of Mathematical Sciences

Florida Atlantic University
Boca Raton, FL 33431

Telephone: +1 (561) 297–3340
Email: Lubarsky.Robert@comcast.net

Abstract—The notion of a feedback query is a natural gener-
alization of choosing for an oracle the set of indices of halting
computations. Notice that, in that setting, the computations
being run are different from the computations in the oracle:
the former can query an oracle, whereas the latter cannot. A
feedback computation is one that can query an oracle, which itself
contains the halting information about all feedback computations.
Although this is self-referential, sense can be made of at least
some such computations. This threatens, though, to obliterate
the distinction between con- and divergence: before running
a computation, a machine can ask the oracle whether that
computation converges, and then run it if and only if the
oracle says “yes.” This would quickly lead to a diagonalization
paradox, except that a new distinction is introduced, this time
between freezing and non-freezing computations. The freezing
computations are even more extreme than the divergent ones,
in that they prevent the dovetailing on all computations into a
single run.

In this paper, we study feedback around Turing computability.
In one direction, we examine feedback Turing machines, and
show that they provide exactly hyperarithmetic computability.
In the other direction, Turing computability is itself feedback
primitive recursion (at least, one version thereof).

We also examine parallel feedback. Several different notions
of parallelism in this context are identified. We show that parallel
feedback Turing machines are strictly stronger than sequential
feedback TMs, while in contrast parallel feedback p.r. is the same
as sequential feedback p.r.

Index Terms—Computability theory, Turing machines, hyper-
arithmetic computability, least fixed points.

AMS 2010 MSC: 03D10, 03D30, 03D60, 03D70

I. INTRODUCTION

In abstract computability theory, the most important type of
non-computable operation is querying whether a computation
halts. When one adds this ability, one obtains a new type of
computation: computation relative to a halting oracle. This
querying process can then be iterated, creating a transfinite
hierarchy of computability strength, with each level of the
hierarchy able to ask halting questions about lower levels.

This hierarchical view of computability strength invites the
question, “What happens when one allows a computation to
ask halting questions about computations of the same type
as itself?” It was by considering this question in the specific
context of Infinite Time Turing Machines (ITTMs, introduced
in [3]) that the third author developed the notion of a Feedback
Infinite Time Turing Machine (FITTM) in [10]. These FITTMs

could be thought of as the most conservative notion of com-
putation extending ITTMs that allows the computation to ask
halting questions about other computations of the same type.
While the FITTMs in [10] are presented as generalizations of
ITTMs, the notion of an abstract feedback computation works
for (almost) any model of abstract computation that allows for
oracles. The fact that the development of feedback needs little
prior theory, combined with its wide applicability, makes it a
fundamental notion of computability theory.

In this paper, we will consider the notion of a feedback
Turing machine, i.e., we will apply this notion of feedback
to ordinary Turing machines. This will allow us to define
the notion of feedback Turing reducibility in direct analogy
with ordinary Turing reducibility. Specifically, a set of natural
numbers X is feedback Turing reducible to Y when there is
a feedback Turing machine with oracle Y that converges on
all inputs and calculates the characteristic function of X . We
will also show that feedback Turing reducibility is in fact the
same thing as hyperarithmetical reducibility.

After that, we will show that those sets corresponding to the
halting inputs of some feedback machine with oracle X are
exactly the Π1

1(X) sets. While feedback Turing machines are
able to ask about the halting of other feedback machines, there
is still the issue of when such a machine becomes engaged in
an infinite sequence of nested queries. When this happens,
a feedback machine is said to freeze. In consequence, the
collection of codes for feedback machines that freeze (relative
to an oracle) is Turing equivalent to the hyperarithmetical
jump (of the oracle). This provides another sense in which the
hyperarithmetical jump is the natural analogue of the Turing
jump for hyperarithmetical reducibility.

Then we turn from the question “what is the feedback
version of Turing computability” to its converse, “what is
Turing computability the feedback version of.” As it turns out,
for any natural and sufficiently strong properly sub-recursive
collection, its feedback version yields exactly the (partial)
computable functions. We detail here the case of the primitive
recursive class. Actually, we distinguish two different ways
one might model feedback here, and show that while one way
does indeed produce all the computable functions, the other
produces instead those sub-functions of the primitive recursive
functions with computably enumerable domain.



The section thereafter addresses parallel feedback. One
aspect of feedback is that some oracle calls about whether a
computation halts do not end with an answer, but rather freeze
the computation, so that no further progress is possible. You
could address this by allowing for a separate kind of oracle
call, which asks whether a computation freezes. This notion,
which we discuss as “iterated feedback” in the last section,
is perfectly good, but very powerful, and there is a weaker
way to address that issue. One could present to the oracle an
indexed family of computations, and ask whether one of them
does not freeze. This goes beyond simple feedback, for while
one could attempt to ask about the individual members of the
family one at a time, if the first freezes then the computation
at hand freezes once that first one is asked about. In contrast,
the model here seems like running an entire family in parallel,
and returning an answer as soon as one of them is seen not
to freeze, hence the name. We discuss several variants of
parallel feedback Turing computability, and isolate the one
that seems to be of greatest interest. We show that it gets
strictly more than sequential feedback Turing computability,
and that in contrast parallel feedback p.r. is essentially the
same as sequential feedback p.r.

Finally, we end this paper with a discussion of several
possible research directions in feedback computability.

A. Related Work

The notion of a feedback machine was first introduced for
the case of ITTMs by Lubarsky [10]. The feedback Turing
machines in this paper can be viewed as the result of uniformly
restricting all running times of an FITTM to be finite, where
divergence occurs whenever a program would have run for an
infinite amount of time.

In fact, even feedback ITTMs have a history, in that they
were inspired by the analysis of the µ-calculus in [9]. First
defined by Scott and DeBakker (unpublished), the µ-calculus
is the fragment of second-order logic which, in addition to
the first-order part, contains least and greatest fixed-point
operators. (For background on the µ-calculus, see [1].) The
source of its great expressive power is that the definition of a
greatest fixed point can have as a parameter a least fixed point,
which itself can depend on the parameter that same greatest
fixed point – in other words, feedback.

Interestingly, there are other ways in which ITTMs relate
to the current work. Whereas ITTMs allow a Turing machine
ordinal time, Koepke [6] considers ordinal Turing machines,
which have ordinal time and space, meaning tapes of length
ORD. Later, with Seyfferth [8], he considers α-machines,
which are OTMs with time and space restricted to a fixed
ordinal α; they show that, for α admissible, their machines
produce exactly the classical notions of α-recursive, α-r.e., and
α-reducible [12]. Admissibility and hyperarithmetic theory are
closely linked, so this is relevant; still, they are not the same.
For an α-machine, the choice of α is fixed, even if α is no
longer admissible relative to a given input, whereas the ordi-
nals needed for hyperarithmetic computations are dependent
on the input and cofinal through the countable ordinals.

Another kind of infinitary machine, also developed by
Koepke [7], are (unresetting) infinite time register machines:
registers can contain arbitrary natural numbers, and the ma-
chine runs for ordinal-many steps. He shows that the ITRM-
computable reals are exactly the hyperarithmetic reals, and
asks what fine structure theory might arise from allowing the
registers to contain ordinals; one might also think to limit also
the amount of time they are allowed to run. Given the result
cited, we expect the answers would speak to our work; so far
as we are aware, though, this has not yet been investigated.

A different way to represent the hyperarithmetic sets comes
from the theory of computability on higher types. Let 2E be
the type-2 functional such that, for f : N→ N,

2E(f):=

{
0, if (∃n ∈ N)f(n) = 0, and
1, otherwise.

Kleene [5] (see also E-recursion in [12]) showed that a set of
natural numbers is hyperarithmetic iff it is computable from
2E (in Kleene’s sense of recursion in higher types).

II. FEEDBACK TURING MACHINES

A. Feedback Turing Machines
In the remainder of the paper, we will speak of (Turing)

machines having the ability to make two types of queries.
First, they can query an oracle X : ω → 2, and second, they
can query a partial function α : A→ {↑, ↓}, called the halting
function, where A ⊆ ω. (By identifying ω with ω × ω, such
an A can sometimes be considered as a set of pairs.) The
notation {e}Xα (n) denotes the eth machine with oracle X and
halting function α on input n. When a Turing machine queries
the oracle, it is said to make an oracle query, whereas when
a Turing machine queries the halting function it has made a
halting query. A halting query behaves just like an oracle
query, so long as the number n asked about is in the domain
of α. If not, the computation freezes: since α(n) cannot return
an answer, there is no next step, but the machine is not in a
halting state, so it is not said to halt either.

Our first result states that for any oracle X , there is a small-
est collection H of codes of machines for which the distinction
between convergence and divergence is unambiguous.

Lemma 1: For any X : ω → 2 there is a smallest
collection HX ⊆ ω × ω such that there is a function
hX : HX → {↑, ↓} satisfying the following:
(↓) If {e}XhX

(n) makes no halting queries outside of HX and
converges after a finite number of steps then (e, n) ∈ HX

and hX(e, n) =↓, and conversely.
(↑) If {e}XhX

(n) makes no halting queries outside of HX and
does not converge (i.e., runs forever) then (e, n) ∈ HX

and hX(e, n) =↑, and conversely.
Furthermore, this hX is unique.

Proof: For any halting function α, let

Γ↓(α) = {(e, n) : {e}Xα (n) converges},
Γ↑(α) = {(e, n) : {e}Xα (n) diverges},
h−1
α (↑) = Γ↑(α), and
h−1
α (↓) = Γ↓(α).



Then h(·) is a monotone inductive operator. (For background
on such, see [1], [9], [12].) Let hX be its least fixed point,
with domain HX . These are as desired.

Definition 2: A feedback Turing machine (or feedback
machine for short) is a machine of the form {e}XhX

for some
e ∈ ω. The notation 〈e〉X(n) is shorthand for {e}XhX

(n).
Then HX is the collection of non-freezing computations

and the notation 〈e〉X(n) ⇓ means (e, n) ∈ HX . If (e, n) 6∈
HX then 〈e〉X(n) is freezing, written 〈e〉X(n) ⇑.

While not surprising, it bears mention that the hX con-
structed in the preceding lemma as a fixed point of a certain
operation is not the only such fixed point. By the Recursion
Theorem, let e be a code of a machine which makes a halting
query about itself; if it gets back ↓ it halts, and if it gets back ↑
it enters into a loop. Inductively, e 6∈ HX . Also, the least fixed
point (as in the previous lemma) starting with hX ∪ {〈e, ↑〉}
contains both hX and 〈e, ↑〉; similarly for 〈e, ↓〉. A similar
construction shows that no such fixed point can have domain
all of ω. Let e code a machine that queries α(e); if it gets
back ↓ it loops, and if it gets back ↑ it halts. Such an e cannot
be in the domain of any consistent halting function h.

B. The Tree of Sub-Computations

Just as a computation of a normal Turing machine converges
if and only if there is a witness to this fact, a feedback machine
is non-freezing if and only if there is a witness to that fact.

The idea is that, from the outside of our computation
(freezing or not), one can imagine that any time a feedback
machine makes a halting query, one creates a new feedback
machine representing this query. One then runs this sub-
machine to figure out what the result of the query should be,
returning ↓ if the new machine converges and ↑ if it diverges
(where each query, be it oracle or halting, is considered to
take one time step). The tree of sub-computations is just a
record of this process, organized naturally as a tree. We will
see that a feedback machine is non-freezing if and only if its
tree of sub-computations is well-founded. This tree is then a
computational witness to the machine being non-freezing.

What follows is the definition of the tree T = TX(e, n) of
sub-computations of the feedback machine 〈e〉X(n). It will be
a subtree of ω<ω; in fact, it will be a nice subtree, in that the
set of successors of any node σ will be an initial segment of
ω:

{n | σ_n ∈ T} ≤ ω. (∗)

Moreover, the nodes of the tree will be labeled with associated
computations.

The root of the tree clearly is the empty sequence 〈〉, labeled
with the main computation (e, n). We think of this root as
being on top and the tree growing downwards. Because it
will be important whether the tree is well-founded or not, the
ordering of nodes ≤ is ⊇: σ ≤ τ iff σ ⊇ τ (that is, σ extends
τ ). So the tree is well-founded exactly when the relation ≤ is
well-founded.

We can finally turn to the definition of T . This will be done
inductively on the ordinals. At every ordinal, we describe how

the computation proceeds. At some, not all, of these ordinal
stages, nodes are inserted into T . This insertion is done depth-
first. That is, nodes are included starting with the root and
continuing along the left-most path. Once a terminal node
is reached (if ever), we back up until we hit a branching
node, and then continue down along the second-left-most path.
Besides defining these ordinal steps, and the nodes and their
labels, at every ordinal stage control is with one node.

At stage 0, control is with the root 〈〉, which is labeled with
the index (e, n).

At a successor stage, if the computation at the node cur-
rently in control is in any state other than making a halting
query, no new node is inserted into T , and the action of the
computation is as with a regular Turing machine. If taking that
action places that machine in a halting state, then, if there is a
parent, the parent gets the answer “convergent” to its halting
query, and control passes to the parent. If there is no parent,
then the current node is the root, and the computation halts.
If the additional step does not place the machine in a halting
state, then control stays with the current node. If the current
node makes a halting query, a new child is formed, after (to
the right of) all of its siblings: in notation, if the current node
is σ, then the new child is σ_k, the lexicographically least
direct extension of σ not yet used. Furthermore, this child is
labeled with the index and parameter of the halting query; a
new machine is established at that node, with program the
given index and with the parameter written on the input tape;
and control passes to that node.

At a limit stage, there are three possibilities. One is that
on some final segment of the stages there were no halting
queries made, and so control was always at one node. Then
that computation is divergent. At that point, if there is a parent,
then the parent gets the answer “divergent” to its halting call,
and control is passed to the parent. If there is no parent, then
the node in question is the root, and the entire computation is
divergent.

A second possibility is that cofinally many halting queries
were made, and there is a node ρ such that cofinally many of
those queries were ρ’s children. Note that such a node must
be unique. Then ρ was active cofinally often, and as in the
previous case ρ is seen to be divergent. So control passes to ρ’s
parent, if any, which also gets the answer that ρ is divergent;
if ρ is the root, then the main computation is divergent.

The final possibility is that, among the cofinally many
halting queries made, there is an infinite descending sequence,
which is the right-most branch of the tree. This is then a
freezing computation. The construction of the tree ends at this
point.

Lemma 3: For each e, n ∈ ω,
(1) 〈e〉X(n) ⇓ if and only if TX(e, n) is well-founded, and
(2) if 〈e〉X(n) ⇑ then TX(e, n) has a unique infinite descend-

ing chain, which is the right-most branch (using �TX(e,n)

and ≤TX(e,n)) through the tree.
Proof: Since hX and HX are least fixed points, (1)

follows by induction on their construction. For (2), the only
way that 〈e〉X(n) can freeze is if it makes a freezing halting



query. Once it does so, its computation does not continue, so
the first such query is (e, n)’s right-most child. That means that
everything to the left is well-founded (by part (1)). Continuing
inductively, each freezing query itself has a freezing query for
a child.

Now, 〈e〉X(n) ⇓ if and only if there is a (unique) compu-
tational witness to this fact, but we can in fact get a bound
on how complicated this witness can be. In the following, let
A(X):=LωX

1
(X) be the smallest admissible set containing the

real X . (For background on admissibility, see [12] or [2].)
Proposition 4: If 〈e〉X(n) ⇓ then TX(e, n) ∈ A(X).
Proof: Inductively on the height of the tree TX(e, n).

Notice that if the node 〈k〉 in TX(e, n) is labeled (ek, nk),
then TX(e, n) restricted to the part beneath 〈k〉 is almost
identical to the tree TX(ek, nk) (the only difference being
the presence of the k at the beginning of every node). So each
such TX(ek, nk) has smaller rank than TX(e, n), and hence
is in A(X). If there are only finitely many such k’s, then it
is a simple enough matter to string the TX(ek, nk)’s together
to build TX(e, n). If there are infinitely many such, then the
admissibility of A(X) will have to be used. It is a simple
enough matter to give a ∆1 definition of the function from k
to TX(ek, nk), and that function suffices to build TX(e, n).

Note that if (∀n ∈ ω)〈e〉X(n) ⇓ then the sequence
〈TX(e, n) : n ∈ ω〉 is in A(X), as well as a sequence
witnesses that the trees in the sequence do indeed satisfy the
∆1 definitions of the TX(e, n)’s.

Proposition 4 is the best possible, by the following two
propositions.

Proposition 5: There is a wf ∈ ω (independent of X)
such that if T ⊆ ωω is a well-founded tree satisfying (∗), and
is computable in X , via index n say, then TX(wf , n) = T .
Moreover, if T is not well-founded, then TX(wf , n) will be
the sub-tree of T consisting of those nodes lexicographically
less than (i.e., to the left of) some node on T ’s left-most path.

Proof: Let 〈wf〉X(n) be the program that runs as follows.
Query in order whether each of 〈0〉, 〈1〉, 〈2〉, . . . is in T .
Whenever it is seen that 〈k〉 is in T , a halting query is made
about 〈wf〉X(nk), where nk is a code for T restricted to
〈k〉 (i.e., σ is in the restricted tree iff k_σ ∈ T ). Then the
generation of the tree of sub-computations for 〈wf〉X(n) is
the depth-first search of T , from left to right, until the first
infinite path is traced.

Proposition 6: The ordinal heights of the well-founded
trees TX(e, n) are those ordinals less than ωX1 .

Proof: By the previous proposition, it suffices to show
there are computable (in X) trees of such height. This is fairly
standard admissibility theory, but just to be self-contained we
sketch an argument here.

This uses ordinal notations, also quite standard (see, e.g.,
[12]), described in the next sub-section for the convenience of
the reader; we promise the argument won’t be circular. The
ordinal notations quite naturally present the ordinals as trees.
That is, we define a function T such that, when n is a notation
for the ordinal α, then T (n) is a computable tree of height

α. For n = 0, the tree T (0) consists of the empty sequence.
For n = 2e, the tree T (n) consists of the empty sequence and
T (e) appended at 〈0〉. For n = 3 · 5e, the tree T (n) consists
of the empty sequence, and, for each k, T ({e}(k)) appended
to 〈k〉.

Regarding freezing computations, 〈e〉X(n) is freezing ex-
actly when during its run it makes a halting query outside
of HX , or, in other words, it makes a halting query about
a freezing index. Because the computation cannot continue
after that, this halting query is the right-most node on level
1 of TX(e, n). Similarly, that node makes a freezing halting
query, and so on. So for a freezing computation, TX(e, n)
has a unique infinite path, which is its right-most path. If
TX(e, n) is truncated at any node along this path (i.e., the
sub-tree beneath that node is eliminated), what’s left is well-
founded. This truncated tree can be built just the way trees
for non-freezing computations can be built, with the use of
the finite parameter of the path leading down to the truncation
node, and so is a member of A(X), hence with height less
than ωX1 . In fact, there are computations such that the heights
of these well-founded truncated sub-trees are cofinal in ωX1 ,
as follows.

Example 7: Let A∗(X) be a non-standard admissible set
with ordinal standard part ωX1 . Let (e, n) be a non-freezing
computation in the sense of A∗(X) with TX(e, n) of height
some non-standard ordinal. When run in the standard universe,
(e, n) is as desired.

C. Feedback Reducibility

Having described the notion of feedback machines, we may
now define feedback reducibility. Just as one set X is Turing
reducible to Y when there is a Turing machine that with oracle
Y computes the characteristic function of X , the set X is
feedback reducible to Y when there is a feedback machine
that with oracle Y computes the characteristic function of X .
We make this precise.

Definition 8: Suppose X,Y : ω → 2. Then X is feedback
reducible to Y , or feedback computable from Y , written
X ≤F Y , when there is an e ∈ ω such that
• for all n ∈ ω, 〈e〉Y (n) ⇓,
• for all n ∈ ω, 〈e〉Y (n) ↓, and
• for all n ∈ ω, 〈e〉Y (n) = X(n).
It is easy to see that ≤F is a preorder.
It turns out that feedback reducibility is intimately con-

nected with hyperarithmetical reducibility. Therefore we
present the central definitions and results of that theory.
For a more thorough treatment, with background and further
citations, we refer the reader to [12].

Definition 9: Suppose X,Y : ω → 2. Then X is
hyperarithmetically reducible to Y , written X ≤H Y , when
X ∈ A(Y ).

Definition 10: The ordinal notations (relative to X),
which are an assignment of ordinals to certain integers, and
are written [n]X = α, are as follows.
• [0]X = 0.



• If [n]X = γ then [2n]X = γ + 1.
• If e is such that {e}X is a total function, and for each n,
{e}X(n) is an ordinal notation, with [{e}X(n)]X = λn,
then

[3 · 5e]X = sup{λn : n ∈ ω}.

Then OX , the hyperarithmetical jump or hyperjump of
X , is the domain of this mapping.

For n ∈ OX , the iterated Turing jump X [n]X is defined
inductively:
• X [0]X = X .
• If n = 2n

′
then X [n]X is the Turing jump of X [n′]X , i.e.,

the set of those e such that {e}X[n′]X (e) ↓.
• If n = 3 · 5e then X [n]X = {〈m, i〉 : i ∈ X [{e}X(m)]X}.

Lemma 11: If [n]X = [k]X then X [n]X and X [k]X have
the same Turing degree.

Hence we can define the αth Turing jump of X , Xα, as
the Turing degree of X [n]X , for any n such that α = [n]X .
For which α is there such an n?

Lemma 12: The ordinals for which there is an ordinal
notation are exactly the ordinals less that ωX1 . Furthermore, for
any real R ⊆ ω, there is an n ∈ OX such that R ≤T X [n]X

iff R ∈ A(X).
Returning to the actual subject at hand, we show that various

of the objects above are feedback computable.
Lemma 13: There is a code hj (for “hyperarithmetical

jump”) where for any X : ω → 2 the feedback machine
〈hj〉X(m,n) does the following:
• If m 6∈ OX it freezes.
• If m ∈ OX then 〈hj〉X(m,n) = X [m]X (n) for all n ∈ ω.

Proof: We start by defining several auxiliary feedback
machines. First is 〈r〉X(e0, e1), which is intended to help with
the case of n = 3 · 5e in the definition of OX . Namely,
r assumes that e0 is telling the truth about membership in
OX , and uses that to decide whether 3 · 5e1 ∈ OX . Formally,
let 〈s〉X(e1, n) be the feedback machine that makes a halting
query of {e1}X(n). If it gets back the answer “diverges,” then
it freezes; if it gets back the answer “converges,” then it halts.
Then let 〈t〉X(e1) (t for “total”) go through each n ∈ ω in turn,
and make a halting query of 〈s〉X(e1, n). Notice that 〈t〉X(e1)
cannot halt. Rather, 〈t〉X(e1) diverges iff {e1}X is total, and
freezes otherwise. Finally, let 〈r〉X(e0, e1) begin by making
a halting query of 〈t〉X(e1). If it gets the answer “diverges,”
it then runs through each n ∈ ω, and makes a halting query
of 〈e0〉X({e1}X(n)). So 〈r〉X(e0, e1) freezes if {e1}X is not
total, or if 〈e0〉X is not total on {e1}X ’s range; else it diverges.

We now leverage r to build a machine which returns 1 on
any input from OX and freezes otherwise. Let 〈h〉X(m) be
the feedback machine that does the following:
• If m = 0, it halts and returns 1.
• If m = 2m

′
, it makes a halting query about 〈h〉X(m′)

and then returns 1.
• If m = 3 · 5e, it makes a halting query about 〈r〉X(h, e)

and then returns 1.
• If m has another value, it freezes.

A straightforward induction shows that 〈h〉X(m) ⇓ if and
only if m ∈ OX , and in this case 〈h〉X(m) = 1.

Next is the case of computing the Turing jump of a
computable set. Let 〈c∗〉X(m,n) be the feedback machine that
runs {n}(n) as an oracle (not feedback) Turing computation,
and anytime n makes an oracle call for a (i.e., queries whether
a is in the oracle), it runs 〈m〉X(a) and uses the result as
the response to the query. So if 〈m〉X is the characteristic
function of some set Y , then 〈c∗〉X(m,n), as a function of
n, converges on the Turing jump of Y and diverges on the
complement. Then let 〈c〉X(m,n) be the code that asks a
halting query of 〈c∗〉X(m,n), and returns 1 if it halts and
0 otherwise. So then c is the code that (as a function of n)
computes the characteristic function of the Turing jump of Y .

Finally, define 〈hj〉X(m,n) as follows. We will have use
of the notation 〈hj∗m〉X(n) ' 〈hj〉X(m,n), which is well-
defined by the Recursion Theorem. First call 〈h〉X(m). If this
doesn’t freeze, then m ∈ OX , and we have the following three
cases:
• If m = 0, make an oracle query of X(n) and return the

result.
• If m = 2m

′
, run 〈c〉X(hj∗m′ , n) and return the result.

• If m = 3 · 5e, then for n = 〈q, i〉, first run {e}X(q)
(which must converge as m ∈ OX )) with output a; then
run 〈hj〉X(a, i) and return the result.

A straightforward induction on the definition of X [m]X

shows that
• 〈hj〉X(m,n) ⇓ if and only if m ∈ OX , and
• for m ∈ OX , if n ∈ X [m]X then 〈hj〉X(m,n) = 1, and

otherwise 〈hj〉X(m,n) = 0.

The following lemma can be thought of as a stage compar-
ison test.

Lemma 14: There is a code hj≤ where for any X → 2
the feedback machine 〈hj≤〉X(m0,m1) does the following:
• If m1 6∈ OX , then 〈hj≤〉X(m0,m1) ⇑.
• Otherwise,

– if m0 ∈ OX and [m0]X ≤ [m1]X , then
〈hj≤〉X(m0,m1) = 1, and

– if m0 6∈ OX or [m0]X > [m1]X , then
〈hj≤〉X(m0,m1) = 0.

Proof: Define 〈hj≤〉X(m0,m1) to be the code that does
the following in order:
(0) Call 〈hj〉X(m1, 0).
(1) If m0 = 0, return 1.
(2) If m0 = 2m

′
0 and m1 = 2m

′
1 , then call 〈hj≤〉X(m′0,m

′
1)

and return the result.
(3) If m0 = 2m

′
0 and m1 = 3 · 5e1 , make a halting query on

the following code:
– At stage n compute {e1}X(n), call the output an.
– If 〈hj≤〉X(m0, an) = 1 then return 1
– Otherwise move to stage n+ 1.

If the code halts, then return 1; if not, return 0.
(4) If m0 = 3 · 5e0 , make a halting query on the following

code:



– At stage n if {e0}X(n) ↑ then return 0; otherwise
let an = {e0}X(n).

– If 〈hj≤〉X(an,m1) = 0, then return 0.
– Otherwise, move to stage n+ 1.

If the code halts then return 0; if not return 1.
(5) Else return 0.

Clause (0) in the above ensures that 〈hj≤〉X(m0,m1) will
freeze if m1 is not in OX .

Clause (1) ensures that if [m0]X = 0 then
〈hj≤〉X(m0,m1) = 1.

Clause (2) ensures that if [m0]X = [m′0]X+1 and [m1]X =
[m′1]X + 1 then 〈hj≤〉X(m0,m1) = 〈hj≤〉X(m′0,m

′
1).

Clause (3) ensures that if [m0]X = [m′0]X + 1 and

[m1]X = lim
n→∞

[{e1}X(n)]X ,

then 〈hj≤〉X(m0,m1) = 1 if and only if there is some n with

〈hj≤〉X(m0, {e1}X(n)) = 1.

That is, if [m0]X is a successor ordinal and [m1]X is a limit
ordinal, then [m0]X ≤ [m1]X if and only if [m0]X is less than
or equal to one of the elements whose limit is [m1]X .

Clause (4) ensures that if

[m0]X = lim
n→∞

[{e0}X(n)]X ,

then 〈hj≤〉X(m0,m1) = 1 if and only if for every n ∈ ω,
both {e0}X(n) ↓ and 〈hj≤〉X({e0}X(n),m1) = 1 hold. That
is, if [m0]X is a limit ordinal, then [m0]X ≤ [m1]X if and
only if every element of the sequence whose limit is [m0]X
is also less than or equal to [m1]X .

An easy induction then shows that
• If m0,m1 ∈ OX , then 〈hj〉X(m0,m1) = 1 if [m0]X ≤

[m1]X , and 〈hj〉X(m0,m1) = 0 if [m0]X > [m1]X .
• If m1 ∈ OX and m0 6∈ OX , then 〈hj〉X(m0,m1) = 0.
• If m1 6∈ OX , then 〈hj〉X(m0,m1) ⇑.

The next lemma is well-known (e.g., see [12] II.5.6).
Lemma 15: For reals X,Y : ω → 2, there is an n ∈ OY

such that X ≤T Y [n]Y (where ≤T is Turing reducibility) iff
X ∈ A(Y ).

The following, which is the main result of this paper, shows
that feedback reducibility and hyperarithmetical reducibility
are in fact the same thing. This therefore tells us that feedback
machines give us a model for hyperarithmetical reducibility.

Theorem 16: For any X,Y : ω → 2, we have X ≤F Y
if and only if X ≤H Y .

Proof: Suppose X ≤F Y , and let e ∈ ω be such that
X(n) = 〈e〉Y (n) for all n ∈ ω. By the observation immedi-
ately after Proposition 4 we have 〈TY (e, n) : n ∈ ω〉 ∈ A(Y ).
The output 〈e〉Y (n) can be computed from TY (e, n), using the
admissibility of A(Y ). (In a little detail, inductively on the tree
TY (e, n), the computation at a node can be run in ω-many
steps, using the results from the children.) Hence X ∈ A(Y ),
and X ≤H Y .

Now suppose X ≤H Y . By Lemma 15 we know for some
m ∈ OY , X ≤T Y [m]Y . By Lemma 13, Y [m]Y ≤F Y . Hence
X ≤F Y .

We then have the following as an easy corollary of Theorem
16.

Corollary 17:
For any X,Y : ω → 2 we have X ≤F Y if and only if X

is A(Y )-recursive (i.e., ∆1-definable over A(Y )).

III. FREEZING JUMPS AND FEEDBACK SEMICOMPUTABLE
SETS

A. Freezing Jump

Just as how there is a natural Turing jump (the set of halting
computations), there is a natural feedback jump: the set of
non-freezing computations.

Definition 18: Fix a computable bijection p : ω → ω×ω.
Define the feedback jump of X : ω → 2 to be the function
X(f) : ω → 2 such that X(f)(a) = 1 if and only if p(a) =
(e, n) and 〈e〉X(n) ⇓.

The following lemma is then immediate.
Lemma 19: If X ≤F Y then X(f) ≤F Y (f). Further-

more, for any X : ω → 2, we have X <F X
(f).

Proof: The proofs are identical to their Turing jump
counterparts.

We will show that the feedback jump is Turing equivalent to
the hyperjump. First, though, we need the notion of a bounded
computation. This is analogous to the notion of an Iterated
Infinite Time Turing machine from [10].

Lemma 20: There is a feedback machine 〈b〉X(e, n, a)
such that
• 〈b〉X(e, n, a) ⇓ if and only if a ∈ OX ,
• for a ∈ OX ,

〈b〉X(e, n, a) ' 〈e〉X(n)⇔ ht(TX(e, n)) ≤ [a]X ,

and
• for a ∈ OX ,

〈b〉X(e, n, a) = ‡ ⇔ ht(TX(e, n)) > [a]X ,

where ht returns the height of a tree.
(Implicitly, ‡ is a new symbol. Formally, identify ω with ω ∪
{‡}.)

Proof: Notice that TX(e, n) is never empty, always
having at least the root 〈〉. If that is all of TX(e, n), then
we say the height is 0.

Let 〈b〉X(e, n, a) be the code that does the following:
• Run 〈hj〉X(a, 0). Note that this will freeze if and only if
a 6∈ OX . If it does not freeze, proceed as follows.

• Run 〈e〉X(n), except that any time a halting query for
(e∗, n∗) is requested, do the following instead:

– If a = 0 then stop and output ‡.
– If a = 2a

′
then ask a halting query of

〈b〉X(e∗, n∗, a′).
∗ If the result is that it diverges then accept ↑ as a

response to the halting query about (e∗, n∗) and
continue with the simulation of 〈e〉X(n).



∗ Otherwise, 〈b〉X(e∗, n∗, a′) converges, say to c. If
c = ‡ then stop and output ‡; otherwise accept ↓
as a response to the halting query about (e∗, n∗)
and continue with the simulation of 〈e〉X(n).

– If a = 3 · 5ea then ask a halting query on the
following code:
∗ At stage m let am = {ea}X(m).
∗ If 〈b〉X(e∗, n∗, am) ↑ then converge to 0.
∗ If 〈b〉X(e∗, n∗, am) ↓ and 〈b〉X(e∗, n∗, am) 6= ‡

then converge to 0.
∗ If 〈b〉X(e∗, n∗, am) = ‡ then advance to stage m+

1.
If this code converges, then run the halting query
for 〈e∗〉X(n∗) and pass the result back to 〈e〉X(n).
Otherwise stop and output ‡.

The intuitive idea of the above code is that at each stage
of the computation, we keep track of a bound on the size of
the computational witness. Then, whenever a halting query is
made of a pair (e∗, n∗), instead of asking it about (e∗, n∗), we
instead ask it about 〈b〉X(e∗, n∗, a∗), where a∗ is some smaller
bound on the computational witness. Then if we can find such
an a∗, we simply proceed as normal. But if we can’t, then we
return ‡, which signifies that our computational witness is too
large.

Theorem 21: For any X : ω → 2, we have X(f) ≡T OX .
Proof: It follows directly from Lemma 13 that OX ≤T

X(f).
To show that X(f) ≤F OX , notice that by Lemma 20 and

Proposition 4,

〈e〉X(n) ⇓ if and only if (∃a ∈ OX)〈b〉X(e, n, a) 6= ‡.

The latter is Σ1-definable over A(X). So X(f) is Σ1-definable
over A(X) and hence Turing reducible to OX .

B. Feedback Semicomputability

Definition 22: A set B ⊆ ω is feedback semicomputable
(in X) when there is an e ∈ ω such that b ∈ B ⇔ 〈e〉X(b) ⇓.

In particular, it is easy to see that for any X , {(e, n) :
〈e〉X(n) ⇓} is feedback semicomputable.

Feedback semicomputable sets look like the analogues of
computably enumerable sets, and this is confirmed by the
following.

Proposition 23: A set B ⊆ ω is feedback semicomputable
in X if and only if it is Σ1-definable over A(X), i.e., in
Π1

1(X).
Proof: Suppose b ∈ B ⇔ 〈e〉X(b) ⇓. By Lemma 3 and

Proposition 4, b ∈ B if and only if there is a function in A(X)
witnessing the well-foundedness of TX(e, b), which provides
the desired Σ1 definition.

Now suppose b ∈ B is Σ1-definable over A(X). Thus B ∈
Π1

1(X). Hence there is a relation RB ⊆ ω<ω ×ω computable
in X satisfying

b ∈ B ⇔ “RB(·, b) is well-founded”.

Let 〈e∗〉X(b, σ, i) (where σ ∈ ω<ω and i ∈ ω) be the
following program:

• Make a halting query about the program which searches
for the least j ≥ i such that RB(σ_j, b) holds.

• If the answer comes back “divergent” then stop.
• If the answer comes back “convergent” then find the least

such j. Make a halting query about 〈e∗〉X(b, σ_j, 0).
Then run 〈e∗〉X(b, σ, j + 1).

Let 〈e〉X(b) be 〈e∗〉X(b, ∅, 0). By construction, TX(e, b) is
RB(·, b) (with a few extra nodes thrown in, by the first step,
which do not affect well-foundedness). So 〈e〉X(b) ⇓ if and
only if RB(·, b) is well-founded, which holds if and only if
b ∈ B.

Corollary 24: A set is feedback computable in X if and
only if both it and its complement are feedback semicom-
putable.

It is worth mentioning that the argument that a set is com-
putable if and only if it and its complement are computably
enumerable does not lift to this context. Is there a way to
uniformly transform a pair (e0, e1) into a code e where e0

(resp. e1) witnesses the feedback semicomputability of B
(resp. B’s complement), and e(B) witnesses the feedback
computability of B?

We next show that the range of any total feedback com-
putable function is a feedback computable set. Hence, unlike
with computably enumerable sets, not every feedback semi-
computable set is the range of some total feedback computable
function.

Lemma 25: If (∀n)〈e〉X(n) ⇓ and b ∈ B ⇔
(∃n)〈e〉X(n) = b, then B is feedback computable.

Proof: Let e∗ be such that 〈e∗〉X(b) is the program that
calls e on each n ∈ ω and halts if and only if b is ever
returned. Note that 〈e∗〉X(b) never freezes, by our assumption
that (∀n)〈e〉X(n) ⇓. Now let f be such that the program
〈f〉X(b) returns 1 if 〈e∗〉X(b) halts and 0 otherwise. Then
〈f〉X is a total feedback computable function that computes
the characteristic function of B.

IV. TURING COMPUTABILITY AS FEEDBACK

Our purposes here are twofold: substantive and method-
ological. For the former, we want to do the inverse of the
previous sections. Whereas earlier we answered the question,
what is feedback Turing computability, now we want to answer
the question, what is Turing computability the feedback of.
Regarding the latter, we would like to see how feedback can
be done when the computation is not thought of as step-by-
step. Until now, the notions of computation for which feedback
has been worked out, namely Turing and infinite time Turing,
are thought to run by one step proceeding after another. This
leads to a very simple feedback model. When a halting query is
made, a new entry is made into the tree of sub-computations,
and whenever that query is answered, the answer is passed
to the querying instance, and the computation resumes. This
works fine, but there are other models of computation. Even
within the Turing algorithms, there are different kinds of pro-
gramming languages, which capture differing computational
paradigms. The step-by-step model captures the run of an
imperative program. Functional and declarative programming,



in contrast, run differently. So it might turn out to be useful
for the study of machine computability to see how feedback
could be implemented in a different context, to say nothing
of other more abstract uses in mathematics, which considers
computations way beyond Turing procedures.

For these reasons, we consider feedback primitive recur-
sion. We will show that it yields exactly the (partial) Turing
computable functions. Furthermore, they are not presented in
an imperative style, but rather functional, as are the recursive
functions. (For the sake of definiteness, we use as our reference
for the primitive recursive and the recursive functions [13].)
This naturally leads to a nested semantics, as is most easily
seen in the definition of Kleene’s T predicate ([13], Theorem
7.2.12): a witness to a computation {e}(x) exists only when
the computation converges.

When turning to feedback p.r., one is quickly struck by
two differences to feedback Turing. For one, all of the base
functions are total. One might immediately ask, does this
mean that all of the halting queries should come back with
“yes”? That is not the case, as evidenced by the self-querying
function. That is, there is still a function which asks the halting
oracle whether it itself halts. This represents a freezing com-
putation. What it does mean, as we shall see, is that there are
no divergent computations, no computations that loop forever.
Every computation either halts or gets stuck at some finite step,
without being able to proceed. One could then ask whether
anything has been gained by allowing for feedback. After all, if
a halting query is freezing, then the computation itself freezes,
and if the halting query is not freezing, then we already know
the answer. There are two possible rejoinders. One is that
there is information in the distinction between the freezing
and the non-freezing computations, providing a certain kind
of enumerability, akin to computable enumerability.

The other rejoinder also speaks to the other difference
with feedback Turing computability. For Turing computability,
an oracle is a set. For primitive recursion, the closest thing
to an oracle is a function. That is, the primitive recursive
functions are those generated by some base functions, closing
under certain inductive schemes. If you want to include more,
you would most naturally include another function f among
the base functions, thereby getting the functions primitive
recursive in f . So one is led to consider a halting oracle that
returns not whether a computation halts (especially since we
know it always does, when non-freezing), but rather the value
of a computation.

With these considerations as motivation, we are now pre-
pared to formalize the notions involved.

Definition 26: For a partial function f (from ω to ω), the
f -primitive recursive functions are those in the smallest class
containing f , the constant functions, projection, and successor,
and closed under substitution and primitive recursion (cf. [13],
Section 7.1). Implicitly, when defining g(−→n ), if any of the
intermediate values are undefined, then so is g(−→n ).

We will need to use standard integer codings of the f -
p.r. functions. Notice that these names can be defined inde-
pendently of any choice of f . One can simply introduce a

symbol for f , leaving it uninterpreted, and consider all the
names so generated. If e is such a code, we will refer to
e as an oracle p.r. index. We will use the standard notation
from computability theory {e}f (−→n ) for the application of the
eth oracle p.r. function, with oracle f , to a tuple of inputs.
This makes sense even in a context with codes for non-p.r.
functions, since it is easily computable whether e codes an
oracle p.r. function (and if not {e}f (−→n ) can be given any
desired default value).

Theorem 27: There is a smallest set H ⊆ ω, and unique
function h : H → ω such that, for all 〈e,−→n 〉 ∈ H ,
• if e is not an oracle p.r. index, or if arity(e) 6= arity(−→n ),

then h(e,−→n ) = ERROR (some default value),
• else h(e,−→n ) ' {e}h(−→n ).

Proof: H is the least fixed point of a positive inductive
definition. (For more background, see [1], [9], [12].)

Definition 28: The feedback primitive recursive func-
tions are the h-p.r. functions, with the h from the preceding
theorem.

Theorem 29: The feedback primitive recursive functions
are exactly the partial computable functions.

Proof: In one direction, we must show only that h is
computable. The least fixed point construction of h(e,−→n ) '
{e}h(−→n ) is naturally given by a finitely branching tree,
with the finite branching corresponding to the substitution
and primitive recursion calls. The construction of the tree is
uniformly computable in e and −→n . If the tree is infinite then
it’s ill-founded, and h(e,−→n ) ' {e}h(−→n ) is undefined. If not,
then the value is computable.

In the other direction, we will use the fact that if x is a
tuple coding finitely many steps in a Turing computation of
{e}(−→n ), then it is p.r. in that data either to extend x by one
step of the computation, for which we use the notation x+, or
recognize that x ends in a halting state. Consider the feedback
p.r. function f(e,−→n , x) which returns
• ERROR, if x is not an initial run of {e}(−→n ), else
• the output of the computation, if x ends in a halting state,

else
• h(f, 〈e,−→n , x+〉).

Then {e}(−→n ) = f(e,−→n , 〈〉).
There remains the question of what would happen if, instead

of considering h to ω, returning the output of a computation,
we took h to tell us merely that a computation converged. This
is the goal of what follows.

Theorem 30: There is a smallest set H ⊆ ω such that, for
h the unique function h : H → 1, H = {〈e,−→n 〉 | e is an oracle
p.r. index, arity(e) = arity(−→n ), and {e}h(−→n ) converges}.

Proof: H is the least fixed point of a positive inductive
definition.

Definition 31: The convergence feedback primitive
recursive functions are the h-p.r. functions, with the h from
the preceding theorem.

Lemma 32: Let f and g be partial functions, and e an
oracle p.r. index. If f ⊆ g then {e}f ⊆ {e}g.

Proof: An easy induction on the definition of {e}.



Corollary 33: Every convergence feedback p.r. functions
is a sub-function of a primitive recursive function.

Proof: Letting 0 be the constant function with value 0,
note that h ⊆ 0 (for h from the previous theorem). Then
{e}h ⊆ {e}0, and of course 0 is p.r.

Theorem 34: The convergence feedback primitive recur-
sive functions are exactly the sub-functions of the p.r. functions
with computably enumerable domains.

Proof: For e a feedback p.r. index, the computations of
{e}h(−→n ) for the various −→n ’s can be computably simulated
and dovetailed, making the domain of {e}h enumerable.

In the other direction, given a c.e. set W , let w be a Turing
index with domain W . Consider the convergence feedback p.r.
function f(w,−→n , x) which returns
• ERROR, if x is not an initial run of {w}(−→n ), else
• 0, if x ends in a halting state, else
• h(f, 〈w,−→n , x+〉),

where x+ is as above. Then −→n ∈W iff f(w,−→n , 〈〉) = 0.
Finally, for e a p.r. index, let g(−→n ) be

{e}(−→n ) · (1 + h(f, 〈w,−→n , 〈〉〉)).

V. PARALLEL FEEDBACK

A variant of feedback, as identified in [10], is parallel
feedback. Imagine having an infinite, parametrized family of
feedback machines, and asking, “does any of them not freeze?”
It is not clear that this could be simulated by the sequential
feedback machines from above. Perhaps this is surprising,
because the situation is different for regular Turing machines.
With them, you could use a universal machine to run all of the
Turing machines together, by dovetailing. But with feedback,
this is not possible. For sure, you could start to dovetail all
of the feedback computations. But as soon as you make a
freezing oracle call, the entire computation freezes. Similarly,
for a parallel call, one might first think of going down the
line until one finds a non-freezing machine, and certainly a
feedback machine could ask the oracle “does the first in the
family not freeze?” But if you’re unlucky, and the first machine
does freeze, then so does your computation right then and
there; if a later one doesn’t, you’ll never get there to find out.

For parallel feedback infinite time Turing machines as
explored in [10], it was left open there whether or not
they yield more than sequential FITTMs. That unhappy fact
notwithstanding, we show below that parallel feedback TMs
get you more than the sequential version, but parallel feedback
p.r. is the same as its sequential version.

A. Parallel Feedback Turing Machines

We should start by identifying the formalism of asking the
oracle about a family of computations. To simplify notation,
we will consider only unary functions; if we wanted to
consider a binary function 〈e〉X(m,n), with, say, a fixed m
as a parameter, then that value of m could be packed into e,
or alternatively with m as a variable, then m and n could be
packaged into an ordered pair. So then a question to the oracle

will be an integer e, and will call for a positive response if
〈e〉X(n) does not freeze for some n, and will itself freeze
otherwise.

At this point we must consider what the response would
be if indeed, for some n, 〈e〉X(n) does not freeze. There are
several options. One is a simple “yes.” Another is a witnessing
input n to this non-freezing. To go this route, n would have
to be chosen in some canonical way, to keep the computation
deterministic. The most natural way seems to be to minimize
the ordinal height of the tree of sub-computations, in case of
a tie returning the smallest integer (in the natural ordering of
ω) of that bunch. In the end, that did not seem like a good
way to go. As we will see, there’s already a lot of power just
restricting the trees to be of height 1, and the natural ordering
of ω has little to do with computation: the simplest re-ordering
of ω would produce wildly different results here, showing that
notion of computation to be non-robust. A more natural way
to go is to punt on the determinism. Allow the oracle to return
any n such that 〈e〉X(n) does not freeze. There is a choice to
be made in this definition. For some n’s that might be returned,
the current computation could freeze, and for others not. So it
is possible that some runs of a computation freeze and others
not. So when we say that an oracle call of e will return “any
n such that 〈e〉X(n) does not freeze,” does that mean that
some run does not freeze, or that all runs do not freeze? Both
notions seem interesting. We work here with the former.

Finally, we will have the oracle return not just some n with
〈e〉X(n) not always freezing, but also some possible output
of 〈e〉X(n). To be sure, one could simulate the calculation of
〈e〉X(n) within the current computation instead, so nothing
is gained or lost by doing this when the output is finite. The
difference emerges when a computation diverges, meaning the
output is ↑. For the part of the construction below that makes
essential use of the parallelism, we will not need the output
to be handed to us. The reason we’re taking it anyway is to
combine the parallel calls with the halting queries. That is, to
simulate a halting query, one need only ask about a family of
computations 〈e〉X(n) that do not depend on n. If a natural
number is returned as an output, then the original computation
converges; if ↑, then it diverges. A finer-grained analysis could
have halting queries separate from parallel calls, the latter of
which return only a non-freezing input.

Yet another option is to have a possible response give only
the output 〈e〉X(n) and not the input n, from which n is not
obviously computable; this strikes us as less natural, and so we
mention it only in passing, to be thorough. For some discussion
on all of these options, see the sub-section on parallelism in
the final section.

In the following, we recycle some of the terminology and
notation from earlier. This includes a computation making a
halting query, even though we now interpret this as being a
parallel halting query. The same notation 〈e〉X(n) will be used
for parallel feedback computation.

Definition 35: Given X : ω → 2 and H : ω×ω → P(ω∪
{↑}), a legal run of 〈e〉XH(n) is (some standard encoding of)
a run of a Turing machine calculation of {e}XH(n), in which,



whenever a halting query f is made, the answer is of the form
〈m, k〉, where k ∈ H(f,m). (Implicitly, if H(f,m) is always
empty, then the computation freezes at this point.) If the last
state of a finite legal run is a halting state, then the content
on the output tape is the output of that run. If the legal run is
infinite, then ↑ is the output of that run. A legal output is the
output of a legal run.

Notice that the set of legal runs is not absolute among
models of ZF. Suppose, for instance, that H(f,m) = {0, 1}.
Consider a computation that just keeps making the halting
query f . Then both 〈m, 0〉 and 〈m, 1〉 are always good
answers, so the legal runs depend on the reals in the model.
Nonetheless:

Lemma 36: Whether k is a legal output of 〈e〉XH(n) is
absolute among all standard models of ZF.

Proof: The collection of all legal runs can be organized
via a natural tree. A node of this tree corresponds to a
computational stage in a legal run. The root is the beginning
of the computation, and we think of the tree as growing
downwards. At a node, continue the computation until the
next halting query. The children of the node are the possible
answers (given H). This tree is absolute.

A legal run is a maximal path through the tree. Such a path
is either finite or infinite. The finite paths are absolute, as they
correspond to terminal nodes (leaves). A finite run ends either
in a halting state, and so gives a finite output, or by asking a
halting query with no answer, and so thereby freezes. Hence
the integer legal outputs are absolute. An infinite legal run is
given by an infinite descending path. While the set of such
paths is not absolute, whether the tree is well-founded or not
is absolute among all standard models, so whether ↑ is a legal
output is absolute.

Definition 37: For any X : ω → 2 and H : ω × ω →
P(ω∪{↑}) let H+(e, n) be the set of legal outputs of 〈e〉XH(n).

Lemma 38: There is a smallest function H such that H =
H+.

Proof: The operator that goes goes from H to H+ is a
positive inductive operator: as any H(f,m) increases, so does
the set of legal runs. So the least fixed point exists, and is the
desired H .

Definition 39: 〈e〉X(n) refers to 〈e〉XH(n), with H as from
the lemma above.

If a computation can have more than one output, what would
it mean to compute a set?

Definition 40: A function f : ω → ω is computable from
X via e if, for all n ∈ ω, f(n) is the only legal output of
〈e〉X(n). A set A ⊆ ω is computable from X via e if its
characteristic function is so computable. Notice that in both
cases 〈e〉X(n) could still have freezing legal runs.

Theorem 41: Parallel feedback can compute more than
sequential feedback. In particular, OX is parallel feedback
computable from X .

Proof: From the subsection on feedback semicomputabil-
ity, there is a (sequential, hence also parallel) machine f which
does not freeze (and WLOG outputs 1) on input n iff n ∈ OX .

To handle the case of those n 6∈ OX , consider the following
computation g. If at any time it considers a number not of the
form 0, 2e, or 3·5e, then g outputs 0, because it is immediately
clear that number is not in OX . When considering 0, g freezes,
because 0 is in OX . When considering 2e, g moves on the
e. When considering 3 · 5e, first g checks whether {e}X is
total. If not, then the machine halts. Else it picks an n non-
deterministically, and then continues the computation from that
n. This g, when run on any n ∈ OX , will always freeze,
because the machine will eventually consider 0. When started
on some n 6∈ OX , it is possible that some legal runs will freeze
too, depending upon the non-deterministic choice made. But
there will be at least one legal run that does not freeze: since
n 6∈ OX , we know n 6= 0; if n = 2e then e 6∈ OX ; else if n
is not of the form 3 · 5e then the computation halts; else there
is some k such that {e}X(k) 6∈ OX , so the computation can
continue. Hence there is a legal output (either 0 or ↑).

Now consider the machine 〈h〉X(e, i), which, for i even,
returns 〈f〉X(e), and, for i odd, returns 〈g〉X(e). Running
〈h〉X(e, ·) in parallel, an even i is returned iff e ∈ OX , and
an odd i is returned iff e 6∈ OX . In the former case, output 1,
in the latter output 0.

B. Parallel Feedback Primitive Recursion

The essence of sequential feedback p.r. was a least (i.e.,
smallest domain) function h such that h(e,−→n ) ' {e}h(−→n ),
for e an oracle p.r. index. Using the same paradigm as in the
previous sub-section, by the nature of non-determinism, there
is more than one possible output. So we consider h as a multi-
valued function, which we take to be a function from ω × ω
to P(ω).

In what follows, we make use of the fact that an oracle
p.r. computation is most naturally expressed as a finite tree, in
which the splitting corresponds to substitution and primitive
recursion, and the terminal nodes to applications of the base
functions.

Definition 42: For H a multi-valued function, a legal
computation of {e}h(n) (from H) is an oracle p.r. compu-
tation in which any value taken for h(f,m) is a member of
H(f,m). A parallel computation of {e}h(n) (from H) is an
oracle p.r. computation in which any value taken for h(f) is
of the form 〈m, k〉, where k ∈ H(f,m).

Proposition 43: There is a smallest multi-valued function
h such that h(e, n) is the collection of outputs of all possible
parallel computations of {e}h(n) from h. (The notion of h
being smaller than g is taken pointwise: for all e and n,
h(e, n) ⊆ g(e, n).)

Proof: Take h to be the least fixed point of the obvious
positive inductive definition.

Definition 44: The parallel feedback p.r. functions are
those multi-valued functions f given by some oracle p.r. index
e using parallel computations from the h of the previous
proposition.

Theorem 45: The parallel feedback p.r. functions are
those multi-valued functions f such that f(n) is computably
enumerable, uniformly in n.



Proof: Given an oracle p.r. index e, a computation of
{e}h(n) can be run computably, uniformly in e and n.
Any occurrence of h(g) can be handled by dovetailing the
computations of {g}h(m) for all m. As outputs are generated
in the sub-computations, they are then used by the calling
instances, making the set of outputs computably enumerable.

In the other direction, let f(n) be a c.e. set, uniformly in
n. We identify f(n) with a Turing code for the corresponding
c.e. set, so that f is taken to be a Turing code also. (In the
end, the set in question is the range of {{f}(n)}.) Let g(n, x)
be the function that checks that x codes a computation of
{f}(n), along with a computation of {{f}(n)}(i) for some
i with output y. If any of those checks fail, g(n, x) freezes
(by, for example, calling h on itself: h(〈g, n, x〉, z), where z is
some dummy variable). If they all pass, then g(n, x) outputs
y. Notice that those checks are p.r., so that g is feedback p.r.
(sequential even). Let {e}h(n) be a call to h(g(n, ·)). Then e
is as desired.

So, in contrast to the parallel Turing machines, there is really
nothing new gained by parallelizing primitive recursion.

VI. FUTURE DIRECTIONS

We consider this work to be just a first (or second, or third)
exploration into feedback for oracle computability. There are
other possible applications than those considered here.

A. Iterated Feedback

In a way, feedback, by providing an oracle for divergence
and convergence, replaces that distinction with one between
freezing and non-freezing. It takes little imagination to ask
what would happen with a feedback-style oracle that also
answered freezing questions. That is, the feedback compu-
tation sketched here is a notion of computability that allows
for oracles and maintains a distinction between freezing and
non-freezing computations. Hence the considerations above
apply, and allow for a discussion of oracles that say whether a
computation freezes or not. We call this hyper-feedback. So:
what can hyper-feedback Turing machines compute?

One possible answer is already afforded by the analysis
of the µ-calculus from [9]. Namely, are the hyper-feedback
definable sets exactly those definable in the µ-calculus over
the natural numbers? The reason to think so is that the base
computations for hyper-feedback, by our work here, are the
hyperarithmetic sets, or, depending on just how you set the
problem up, those sets definable from O. It is well known that
this corresponds to least points of positive inductive operators
in arithmetic, which is the first step in the µ-calculus, one
application of the least-fixed-point operator. What gives the
µ-calculus its enormous strength is the feedback built into
the language. So both hyper-feedback and the µ-calculus are
extensions of least fixed points by feedback. Hence one might
think they produce the same sets.

On the other hand, the µ-calculus provides a canonical ω-
sequence through its limit, namely via those sets you get by
restricting the number of alternations between least and great-
est fixed point to a finite number. There seems to be no such

ω-sequence in hyper-feedback. So the ultimate comparison
between these two models is of independent interest.

B. Feedback ITTMs
As discussed in the introduction, feedback machines were

first introduced in [10], perhaps surprisingly not for the most
common kind of machine, Turing machines, but rather for infi-
nite time Turing machines. To this day, the reals so computable
have yet to be characterized. It is easy to see they are the reals
in an initial segment of L, but its ordinal height has yet to be
described. What makes this especially intriguing, beyond for
its own sake, is that it seems to be related to determinacy.
That is, since [10] it has been shown that the closure point
of FITTM computations is at most the least ordinal γ such
that Lγ models Σ0

3-Determinacy [11]. We conjecture that
there is actual equality here. What makes this plausible is
the connection on both sides with Σ2 reflection. Welch [14],
[15] characterized the closure point of regular ITTMs via Lζ ,
the least initial segment of L with a Σ2 elementary extension
LΣ. So you would expect FITTMs to have a closure point at
some sort of super-Σ2 reflecting ordinal. In other work [16], he
characterizes the least model of Σ0

3-Determinacy via just such
a kind of strong Σ2 reflection. Hence the presumed connection
between FITTMs and Σ0

3-Determinacy.

C. Feedback for Other Computabilities
It could go without saying that feedback applies to any

notion of computation that allows for oracles. If you consider
the feedback version of any known theory of computability,
the result is a notion of computability that is either already
known, or not. In the former case, it is interesting because
it’s a new connection between already established theories
of computation. An example of this is the main result here,
that feedback Turing machines are exactly the hyperarithmetic
algorithms. The latter case is interesting, because you then
have a newly identified kind of computation to explore. An
example of this is from the previous sub-section, feedback
ITTMs. We would like to see what happens with other
examples of feedback.

Some that we are currently considering are other sub-
recursive collections, like p.r., that are sufficiently robust. We
believe we can show, using only certain closure properties of
the class, that their feedback versions are exactly the Turing
computable functions. This might answer the question, why
we considered the primitive recursive functions in particular.
The answer would then be, no solid reason, just a convenient
choice among the many options.

D. Alternative Semantics
All of the semantics we have considered so far have been the

most conservative possible: the interpretations we took were
always least fixed points, allowing something in only when
necessary. Of course, one gets a perfectly coherent semantics
by taking any fixed point. Is there anything to be gained by
studying these alternative interpretations?

Once one hears least fixed point, one naturally thinks of
greatest fixed point, and so could naively think that there is a



second natural semantics. It’s actually more complicated than
that, though. The considerations here are not just about a set
of non-freezing computations, but also the determination of
whether such a computation is convergent or divergent. If
one were to follow the gfp dictum “start with everything and
whittle it down until you have a fixed point,” we would have to
start with a set containing both assertions “e converges” and “e
diverges.” Such an oracle we would call inconsistent. Among
the consistent oracles, there is no natural largest one, since any
function from ω to {↑, ↓} is maximal; so there is no unique
greatest fixed point. One could of course consider inconsistent
oracles, thereby allowing for a gfp, but we are unsure how they
should be interpreted. If for instance an oracle says that e both
converges and diverges, if e is called several times during a
computation, would a legal run insist that the oracle give the
same answer every time? So our questions are, how should
inconsistent oracles be interpreted, and what, if anything, are
they useful for?

E. Parallelism

It would not take a lot to realize that the section on
parallelism is incomplete. Even at its very opening, many
different options for its interpretation were presented, but only
one was used. What do the others give you? More importantly,
it was shown that parallel Turing feedback gets more than
sequential Turing feedback, but we just haven’t gotten around
yet to thinking about exactly what the former does compute. So
what does it? In particular, how does it compare with iterated
feedback? Another question comes from considering the other
case discussed, that parallel feedback primitive recursion does
not get any more than sequential feedback primitive recursion.
Is there some general way, applicable to many cases, to
distinguish those versions of feedback for which the parallel
variant is stronger than the sequential from those versions for
which it is not?

F. Kolmogorov Complexity

One of the properties of Martin-Löf randomness which
makes it stand out among the other notions, such as Schnorr
randomness or Kurtz randomness, is that the same notion is
obtained through several natural, but very different, definitions.
Two of the most significant such definitions are via Martin-Löf
tests and via Kolmogorov complexity.

As with many concepts in classical computability theory
there is an analogue of a Martin-Löf test in higher computabil-
ity theory which is obtained by simply replacing “computable”
in the definition with “∆1

1” and “computably enumerable” with
“Π1

1”. The resulting notion of a Martin-Löf test is called a Π1
1-

Martin-Löf test, and the corresponding notion of a Martin-Löf
random real is called a Π1

1-Martin-Löf random real.
Given that there is a natural meta-computable analogue of

a Martin-Löf random real, it is natural to ask if there is also
a meta-computable analogue of a Kolmogorov random real.
Here, though, we run into a small problem.

The difficulty of generalizing Kolmogorov randomness
arises in defining Kolmogorov complexity for finite strings. In

particular, to have this notion make sense, we need a notion
of “machine” which takes in finite elements and outputs finite
elements. One solution to this problem was proposed in [4],
which introduced the notion of a Π1

1-machine and showed
that the analogous notion of Kolmogorov randomness agrees
with the notion of passing Π1

1 Martin-Löf tests. Feedback
machines provide another natural notion of a finite machine
that performs a meta-computation. This leads to the following
definition.

Definition 46: Fix a universal (parallel) feedback machine
U . The (parallel) feedback complexity of a finite string X
(relative to U ), denoted KF (X) (or KPF (X)), is the length
of the shortest input Y such that U(Y ) = X . A real r ∈
2ω is said to be (parallel) feedback Kolmogorov random if
there is a constant c such that (∀n)KF (r|n) ≥ n − c (or
(∀n)KPF (r|n) ≥ n− c).

Because feedback computation captures the Π1
1-sets, we

expect that the notion of a feedback Kolmogorov random
real should coincide with that of a Π1

1-Martin-Löf random
real. Furthermore, just as parallel feedback machines can
characterize sets which ordinary feedback machines can’t, we
expect the collection of parallel feedback Kolmogorov random
reals to be strictly contained in the collection of feedback
Kolmogorov random reals. It is then an interesting problem
to characterize this notion of randomness.

REFERENCES

[1] A. Arnold and D. Niwinski, “Rudiments of µ-Calculus,” Studies in
Logic and the Foundations of Mathematics, v. 146, North Holland,
2001

[2] Jon Barwise, “Admissibile Sets and Structures,” Perspectives in Math-
ematical Logic, Springer-Verlag, Berlin 1975

[3] Joel Hamkins and Andy Lewis, “Infinite time Turing machines,” The
Journal of Symbolic Logic, v. 65 (2000), pp. 567–604

[4] Greg Hjorth and André Nies, “Randomness via effective descriptive set
theory,” Journal of the London Mathematical Society, Second Series,
v. 75 (2007), pp. 495–508

[5] Stephen Cole Kleene, “Recursive functionals and quantifiers of finite
types. I,” Transactions of the American Mathematical Society, v. 91
(1959), pp. 1–53

[6] Peter Koepke, “Turing computations on ordinals,” The Bulletin of
Symbolic Logic, v. 11 (2005), pp. 377–397

[7] Peter Koepke, “Infinite time register machines,” in Logical Approaches
to Computational Barriers (Arnold Beckmann et al., eds.), Lecture
Notes in Computer Science 3988 (2006), pp. 257–266

[8] Peter Koepke and Benjamin Seyfferth, “Ordinal machines and admis-
sible recursion theory,” Annals of Pure and Applied Logic, v. 160
(2009), pp. 310–318

[9] Robert Lubarsky, “µ-definable sets of integers,” The Journal of Sym-
bolic Logic, v. 58 (1993), pp. 291–313

[10] Robert Lubarsky, “ITTMs with feedback”, in Ways of Proof Theory
(Ralf Schindler, ed.), Ontos, 2010, pp. 341–354

[11] Robert Lubarsky, “Feedback ITTMs and Σ0
3-determinacy,” slides, avail-

able at http://math.fau.edu/lubarsky/pubs.html
[12] Gerald Sacks, “Higher Recursion Theory”, Perspectives in Mathemat-

ical Logic, Springer-Verlag, Berlin 1990, pp. xvi+344
[13] Dirk van Dalen, Logic and Structure, Springer, 2008
[14] Philip Welch, “Eventually infinite time Turing machine degrees: infinite

time decidable reals,” The Journal of Symbolic Logic, v. 65 (2000),
pp. 1193–1203

[15] Philip Welch, “Characteristics of discrete transfinite Turing machine
models: halting times, stabilization times, and normal form theorems,”
Theoretical Computer Science, v. 410 (2009), pp. 426–442

[16] Philip Welch, “Weak systems of determinacy and arithmetical quasi-
inductive definitions,” The Journal of Symbolic Logic, v. 76 (2011),
pp. 418–436


