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Abstract. We consider ergodic Sym(N)-invariant probability measures on
the space of L-structures with domain N (for L a countable relational lan-
guage), and call such a measure a properly ergodic structure when no iso-
morphism class of structures is assigned measure 1. We characterize those
theories in countable fragments of Lω1,ω for which there is a properly ergodic
structure concentrated on the models of the theory. We show that for a
countable fragment F of Lω1,ω the almost-sure F -theory of a properly ergodic
structure has continuum-many models (an analogue of Vaught’s Conjecture
in this context), but its full almost-sure Lω1,ω-theory has no models. We also
show that, for an F -theory T , if there is some properly ergodic structure that
concentrates on the class of models of T , then there are continuum-many such
properly ergodic structures.
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1. Introduction

Symmetric random constructions of mathematical structures have been ex-
tensively studied in probability theory, combinatorics, and logic. One of the
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best-known examples is the countably infinite Erdős–Rényi random graph, whose
edges are determined by an independent coin flip for each pair of vertices. With
probability 1, this process produces a particular countable graph up to iso-
morphism, known as the Rado graph (or random graph). The paper [AFP16]
provided a characterization of those countable structures that can be produced
via a symmetric random construction.

In the present paper we study the properly ergodic structures, namely those
symmetric random constructions that do not give rise to a single mathematical
structure, but rather spread their probability mass across many isomorphism
classes of structures. To do so, we make use of tools from infinitary model
theory and from probability theory, especially the Aldous–Hoover–Kallenberg
representation of exchangeable structures.

1.1. Ergodic structures. Let L be a countable relational language, and write
StrL for the measurable space of L-structures with domain N. We say that a
probability measure on StrL is invariant when it is invariant under the natural
action (called the logic action) of the permutation group Sym(N) on StrL. An
invariant probability measure on StrL can be thought of as a distribution on
countable structures that does not depend on the labeling of the domain. The
orbits of the logic action are the isomorphism classes of L-structures in StrL.

An invariant probability measure µ on StrL is ergodic when the null and co-null
sets are the only Borel sets that are almost surely invariant. In other words, µ is
ergodic if, whenever µ(X4σ[X]) = 0 for all σ ∈ Sym(N), we have µ(X) = 0 or
µ(X) = 1. The ergodic invariant probability measures are extreme points in the
space of invariant probability measures on StrL, and any invariant probability
measure can be decomposed as a mixture of ergodic ones. (For details, see, e.g.,
[Kal05, Lemma A1.2 and Theorem A1.3].) Hence when considering invariant
probability measures on StrL, it often suffices to restrict attention to the ergodic
ones.

In fact, the ergodic invariant probability measures can be thought of as random
symmetric analogues of model-theoretic structures, and so we call them ergodic
structures. An ergodic structure µ determines the “almost-sure truth value” of
every sentence of the infinitary logic Lω1,ω, as the set of models for a sentence of
Lω1,ω is an invariant Borel set in StrL, and hence is assigned measure 0 or 1 by
µ. Therefore every ergodic structure has a complete almost-sure theory, in Lω1,ω

or in any fragment of Lω1,ω.
The ergodic structures have several additional nice properties. The Aldous–

Hoover–Kallenberg theorem implies that every invariant probability measure on
StrL can be represented as a random process that depends on independent sources
of randomness at every finite subset of N (see §2.4 for more details). The ergodic
structures are those invariant measures with dissociated representations, i.e., in
which the random process does not depend on “global” randomness (formally,
randomness indexed by the empty set in the representation). Equivalently,
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ergodic structures are those in which the behavior on disjoint finite subsets of N
is independent.

Further, the ergodic structures are exactly those invariant measures which arise
as a limit, in the weak topology, of measures obtained by uniformly sampling
from a finite structure. If we restrict to a language with a single binary relation, a
rich source of ergodic structures comes from those measures obtained by sampling
a graphon [Lov12]. Just as graphons arise as limits of sequences of finite graphs
which are convergent in the appropriate sense, ergodic structures can be viewed
as limits of convergent sequences of finite L-structures. For details, see [Kru16,
§1.2].

1.2. Properly ergodic structures. An ergodic structure is called properly
ergodic when it does not assign measure 1 to any Sym(N)-orbit, i.e., isomorphism
class of L-structures. In fact, a properly ergodic structure must assign measure
0 to every Sym(N)-orbit.

The paper [AFP17] characterized those F -theories (where F is a countable
fragment of Lω1,ω) that are the complete almost-sure F -theory of an ergodic
structure. This characterization was in terms of trivial definable closure (see
§2.2), generalizing the result in [AFP16] for the case of a single Sym(N)-orbit
(i.e., the non-properly ergodic case). In the present paper, we are interested
in understanding which F -theories are the complete almost-sure F -theory of a
properly ergodic structure.

The most well-known examples of ergodic structures (such as the Erdős–Rényi
random graph described above) concentrate on a single isomorphism class, and
indeed, it is not immediately obvious how to construct any properly ergodic
structures. At the American Institute of Mathematics workshop on Graph and
Hypergraph Limits in 2011, Omer Angel asked whether the distribution on
countable graphs induced by a graphon can have more than one isomorphism
class in its support. By [LS12], the distribution on countable graphs induced
by a graphon is ergodic, and so this question is asking whether there are any
properly ergodic structures that concentrate on the theory of graphs. During the
workshop Gábor Kun provided an example of such a properly ergodic structure;
see [PSN11, §2.3] for details. In fact, a properly ergodic graph was discovered
somewhat earlier by Bonato and Janssen in [BJ11]; see Example 3.1 for details.

The case of properly ergodic structures has been further considered in [AFNP16],
where a class of examples was constructed that concentrate on the sets of mod-
els of certain “approximately ℵ0-categorical” first-order theories with trivial
definable closure. One such class of examples is described in Example 3.2.

In the present paper we characterize those F -theories that are the complete
almost-sure F -theory of a properly ergodic structure. Additionally, we show
that for any properly ergodic structure µ, the complete almost-sure Lω1,ω-theory
of µ has no models (of any cardinality), but that for any countable fragment
F , the complete almost-sure F -theory of µ has continuum-many models up to
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isomorphism. This can be viewed as an analogue of Vaught’s Conjecture in the
setting of ergodic structures.

In [AFKP17] it was shown that for every countable structure M , the number
of ergodic structures concentrating on its isomorphism class is zero, one, or
continuum. Moreover, the case of one only occurs when M is highly homogeneous,
i.e., interdefinable with one of the five reducts of the rational linear order. We
extend this result to the properly ergodic case, showing that if there exists a
properly ergodic structure concentrating on the class of models of an F -theory
T , then there are continuum-many properly ergodic structures concentrating on
the class of models of T .

1.3. Outline of paper. Section 2 contains some basic definitions and results,
including the notion of trivial definable closure, a particular form of Π2 sentence
that we call Π−2 , and the Aldous–Hoover–Kallenberg representation.

In Section 3, we provide a number of examples of properly ergodic structures,
which illustrate some of their key features.

In Section 4 we undertake a Morley–Scott analysis of an ergodic structure
µ, based on Morley’s proof [Mor70] that the number of isomorphism classes of
countable models of a sentence of Lω1,ω is countable, ℵ1, or 2ℵ0 . This gives us
a notion of Scott rank for ergodic structures and, in the properly ergodic case,
allows us to find a countable fragment F of Lω1,ω in which there is a formula χ(x)
which is satisfied with positive probability (under instantiations of its parameters
independently sampled from µ), but which picks out continuum-many F -types,
each of which has probability 0 of being realized. The analogue of Vaught’s
Conjecture mentioned above is a corollary of this analysis.

In Section 5, we introduce the notion of a rooted model of a theory. A structure
M is rooted if every collection of non-isolated types (e.g., the continuum-many
types of measure 0 coming from the Morley–Scott analysis) has “few” realizations
in M , in a sense that we will make precise. We use the Aldous–Hoover–Kallenberg
theorem to show that a structure sampled from a properly ergodic measure is
almost surely rooted.

In Section 6, given a theory T having trivial definable closure, we use a
single rooted model of T to guide the construction, via an inverse limit, of a
rooted Borel model M |= T equipped with an atomless probability measure
ν. By sampling from (M, ν), we obtain a properly ergodic structure µ that
concentrates on the class of models of T . The inverse limit construction is a
refinement of the methods from [AFP16], [AFNP16], and [AFP17], which in
turn generalized a construction of Petrov and Vershik [PV10]. Further, we use
a technique from [AFKP17] to rescale ν, obtaining continuum-many properly
ergodic structures concentrating on the class of models of T .

Putting together the results of Sections 4–6, we obtain the characterization of
the complete almost-sure F -theories of properly ergodic structures.
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2. Preliminaries

2.1. The space StrL, infinitary logic, and ergodic structures. Throughout
this paper, let L be a countable relational language. We study invariant measures
on the space StrL of L-structures with domain N. One could formulate this work
in terms of arbitrary countable languages (which allow constant and function
symbols), but it turns out that one does not lose much by working in the
relational case — there are no ergodic structures in languages having constant
symbols, and, in an ergodic structure, the interpretation of a function symbol
must take some value among its inputs almost surely (see [AFP16, §§3–4]). For
more details on how to translate results about invariant measures for countable
relational languages to the case of arbitrary countable languages, see [AFP17].

Definition 2.1. StrL is the space of L-structures with domain N. The topology
is generated by the sets of the form JR(a)K = {M ∈ StrL | M |= R(a)} and
J¬R(a)K = {M ∈ StrL |M |= ¬R(a)}, where R ranges over the relation symbols
in L and a ranges over the ar(R)-tuples from N.

A structure M ∈ StrL is uniquely determined by whether or not, for each
relation symbol R in L of arity ar(R) and each ar(R)-tuple a from N,

M |= R(a)

holds. It follows that StrL is homeomorphic to the Cantor space∏
R∈L

2(Nar(R)).

Recall that Lω1,ω is the infinitary extension of first-order logic obtained by
allowing, as new formula-building operations, the conjunction or disjunction of
any countable (< ω1) family of formulas with a common finite (< ω) set of free
variables. We ensure that all our variables come from a fixed countable supply.
For a reference on Lω1,ω, see [KK04].

In contrast to the infinitary logic Lω1,ω, we will also be interested in the
quantifier-free fragment of first-order logic, in which the only formula-building
operations are negation, finite conjunction, and finite disjunction. Throughout
this paper, when we speak of quantifier-free formulas and types, we mean
quantifier-free first-order formulas and types.

Given a formula ϕ(x) ∈ Lω1,ω and a tuple a from N of the same length as x,
we let

Jϕ(a)K = {M ∈ StrL |M |= ϕ(a)}.
Every Jϕ(a)K is a Borel set in StrL. Indeed, the formula-building operations
of negation and countable conjunction and disjunction correspond to the set-
building operations of complementation and countable intersection and union,
and quantifiers over the countable domain also correspond to certain countable
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intersections and unions:

J∀xϕ(a, x)K =
⋂
b∈N

Jϕ(a, b)K

J∃xϕ(a, x)K =
⋃
b∈N

Jϕ(a, b)K.

Restricting ourselves to finite Boolean operations, Jϕ(a)K is a clopen set when
ϕ(x) is a quantifier-free formula. In fact, by compactness, every clopen set in
StrL has the form Jϕ(a)K for some quantifier-free formula ϕ.

Let Sym(N) denote the permutation group of N.

Definition 2.2. The logic action is the natural action of Sym(N) on StrL,
given by permuting the underlying set. Namely, for σ ∈ Sym(N) and M ∈ StrL,
we have

σ(M) |= R(a1, . . . , an) if and only if M |= R
(
σ−1(a1), . . . , σ−1(an)

)
for all R ∈ L.

Note that σ(M) = N if and only if σ : M → N is an isomorphism of L-
structures, so the orbit of a point M ∈ StrL under the logic action is the set of
all structures in StrL which are isomorphic to M . We recall Scott’s theorem,
which says that this set is definable by a sentence of Lω1,ω.

Theorem 2.3 (Scott, [Mar02, Theorem 2.4.15]). For any countable structure
M , there is a sentence ϕM of Lω1,ω, the Scott sentence of M , such that for
all countable structures N , we have N |= ϕM if and only if N ∼= M .

We are now able to define the class of invariant measures on StrL, and
specifically, the ergodic and properly ergodic ones.

Definition 2.4. Let µ be a Borel probability measure on StrL. We say that
µ is invariant (under the logic action) if, for every Borel set X and every
σ ∈ Sym(N), we have µ(σ[X]) = µ(X).

Now suppose that µ is invariant. A Borel set X is almost surely invariant
if µ(X4σ[X]) = 0 for all σ ∈ Sym(N). We say that µ is ergodic if, for every
almost surely invariant Borel set X, either µ(X) = 0 or µ(X) = 1. Following
terminology from [BM00, §I.2] and elsewhere, we say that µ is properly ergodic
if µ(X) = 0 for every orbit X of the logic action.

Definition 2.5. An ergodic structure is an ergodic invariant probability
measure on StrL.

This definition takes on a more concrete character if we restrict our attention
to the measures assigned to instances of quantifier-free formulas. The following
proposition is an application of the Hahn–Kolmogorov measure extension theorem
[Tao11, Theorem 1.7.8, Exercise 1.7.7].
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Proposition 2.6. Let B∗ be the Boolean algebra of clopen sets in StrL (so B∗
consists of those sets of the form Jϕ(a)K, where ϕ is a quantifier-free formula
and a is a tuple from N). Any finitely additive measure µ∗ on B∗ extends to a
unique Borel probability measure µ on StrL. Moreover, µ is invariant if and only
if µ∗ is; that is, if and only if µ∗(Jϕ(a)K) = µ∗(Jϕ(σ(a))K) for any σ ∈ Sym(N).

Remark 2.7. Additionally, it follows from Theorem 2.28 below that an invariant
measure µ on StrL is ergodic if and only if the quantifier-free types of disjoint
tuples from N are independent. That is, whenever ϕ(x) and ψ(y) are quantifier-
free formulas and a and b are disjoint tuples from N whose lengths are those of
x and y respectively, we have µ(Jϕ(a) ∧ ψ(b)K) = µ(Jϕ(a)K)µ(Jψ(b)K).

For the remainder of this subsection, let µ be an ergodic structure.

Remark 2.8. If ϕ(x) is a formula of Lω1,ω and a is a tuple of distinct elements of
N (of the same length as x), then, since µ is invariant under the logic action, the
value µ(Jϕ(a)K) is independent of the choice of a. For convenience, we denote this
quantity by µ(ϕ(x)), and refer to it as the measure of the formula ϕ. Note that
under this convention, if ϕ(x) implies xi = xj for some i 6= j, then µ(ϕ(x)) = 0.

Definition 2.9. If ϕ is a sentence of Lω1,ω, we say µ almost surely satisfies
ϕ, or µ concentrates on ϕ, if µ(ϕ) = 1. We write µ |= ϕ, and we set

Th(µ) = {ϕ ∈ Lω1,ω | µ |= ϕ}.
Similarly, if Σ is a set of sentences of Lω1,ω, we write µ |= Σ if µ |= ϕ for all
ϕ ∈ Σ, and say that µ is an ergodic model of Σ.

The following result is a connection between infinitary logic and ergodic
invariant measures; see also [AFP17].

Proposition 2.10. Th(µ) is a complete and countably consistent theory of
Lω1,ω. That is, for every sentence ϕ of Lω1,ω, ϕ ∈ Th(µ) or ¬ϕ ∈ Th(µ), and
every countable subset Σ ⊆ Th(µ) has a model.

Proof. For any sentence ϕ, the set JϕK is an invariant Borel set. In particular,
it is almost surely invariant, so by ergodicity, µ(ϕ) = 0 or 1, and hence µ |= ϕ
or µ |= ¬ϕ. Now let Σ be a countable subset of Th(µ). Since a countable
intersection of measure 1 sets has measure 1, µ(

∧
ϕ∈Σ ϕ) = 1. In particular,

J
∧
ϕ∈Σ ϕK is non-empty. �

A special case of Definition 2.9 is when the sentence ϕ is a Scott sentence.

Definition 2.11. If M is a countable structure, we say that µ is almost surely
isomorphic to M , or µ concentrates on M , if µ |= ϕM , where ϕM is the
Scott sentence of M ; equivalently, µ assigns measure 1 to the orbit of M .

Remark 2.12. If µ is properly ergodic, then Th(µ) contains ¬ϕM for every
countable structure M , and thus Th(µ) has no countable models. A priori,
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Th(µ) may have uncountable models (Löwenheim–Skolem does not apply to
complete theories of Lω1,ω), but we will see later (Corollary 4.9) that this is not
the case: Th(µ) has no models of any cardinality. Nevertheless, as noted in
Proposition 2.10, every countable subset of Th(µ) has countable models. This
suggests that we should restrict our attention to countable fragments of Lω1,ω.

Definition 2.13. A fragment of Lω1,ω is a set of formulas which contains all
atomic formulas and is closed under subformulas, finite Boolean combinations,
quantification, and substitution of free variables (from the countable supply). If
F is a fragment of Lω1,ω, we set

ThF (µ) = {ϕ ∈ F | µ |= ϕ}.

A countable set of formulas Φ generates a countable fragment 〈Φ〉, the least
fragment containing this set. The minimal fragment FO := 〈∅〉 is first-order
logic.

Definition 2.14. Let F be a countable fragment of Lω1,ω.

• A set of sentences T is a (complete satisfiable) F -theory if T has a model
and, for every sentence ϕ ∈ F , either ϕ ∈ T or ¬ϕ ∈ T . Equivalently,
there is a structure M for which T = {ψ ∈ F |M |= ψ}.
• A set of formulas p(x) is an F -type if there is a structure M and a tuple
a from M such that p(x) = {ψ(x) ∈ F | M |= ψ(a)}. We say that a
realizes p in M .
• An F -type p is consistent with an F -theory T if it is realized in some

model of T , and we write SnF (T ) for the set of F -types in n variables
which are consistent with T .

Remark 2.15. The Löwenheim–Skolem theorem holds for countable fragments of
Lω1,ω (see [KK04, Theorem 1.5.4]). Thus, if F is countable, every F -theory has
a countable model and every F -type which is consistent with T is realized in a
countable model of T .

Remark 2.16. If F is countable and p is an F -type, then we denote by θp(x)
the conjunction of all the formulas in p, i.e.,

∧
ϕ∈p ϕ(x). This is a formula of

Lω1,ω (although not a formula of F in general), so it is assigned a measure by
our ergodic structure µ, as described in Remark 2.8. We will write µ(p) as
shorthand for µ(θp(x)), and refer to this as the measure of the type p. This is
the probability, according to µ, that any given tuple of distinct elements of N
(of the appropriate arity) satisfies p.

2.2. Trivial definable closure. The paper [AFP17] shows that trivial definable
closure is a necessary and sufficient condition for a theory (in a countable
fragment) to have an an ergodic structure which satisfies it. Here we state
several definitions and basic facts, and we provide a proof of one direction of
this characterization.
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Definition 2.17. Let F be a fragment of Lω1,ω. An F -theory T has trivial
definable closure (abbreviated trivial dcl) if there is no formula ϕ(x, y) in F
such that

T |= ∃x ∃!y
(
(
∧n
i=1 y 6= xi) ∧ ϕ(x, y)

)
.

Here ∃! y is the standard abbreviation for “there exists a unique y”.

Remark 2.18. If T is the complete F -theory of a structure M , then T has
trivial dcl if and only if M has trivial dcl for the fragment F in the usual sense:
dclF (A) = A for all A ⊆M , where dclF (A) is the set of all b ∈M such that b is
the unique element of M satisfying some formula in F with parameters from A.

If ϕ(x, y) witnesses that T has nontrivial dcl, then taking ϕ∗ to be the formula
ϕ(x, y) ∧ ∃≤1y ϕ(x, y) we have the stronger condition that T proves that ϕ∗ is a
definable function on some non-empty domain. That is,

T |= (∃x∃y (
∧n
i=1 y 6= xi) ∧ ϕ∗(x, y)) ∧

(
∀x∃≤1y ϕ∗(x, y)

)
.

Here ∃≤1y is the standard abbreviation for “there is at most one y”.

The following argument first appeared (in a slightly different setting) in
[AFP16, Theorem 4.1]; as stated, this result is from [AFP17]. We include it here
for completeness.

The key observation is the standard fact that if a measure is invariant under
the action of some group G, then no positive-measure set can have infinitely
many almost surely disjoint images under the action of G.

Theorem 2.19. Let µ be an ergodic structure and F a fragment of Lω1,ω. Then
ThF (µ) has trivial dcl.

Proof. Suppose there is a formula ϕ(x, y) in F such that

µ
(
∃x ∃!y

(
(
∧n
i=1 y 6= xi) ∧ ϕ(x, y)

))
= 1.

Let ψ(x, y) be the formula (
∧n
i=1 y 6= xi) ∧ ϕ (x, y).

By countable additivity of µ, there is a tuple a from N such that

µ(J∃!y ψ(a, y)K) > 0.

Let θ(a) be the formula ∀z1 ∀z2 (ψ(a, z1) ∧ ψ(a, z2) → (z1 = z2)), so that
∃!y ψ(a, y) is equivalent to

∃y ψ(a, y) ∧ θ(a).

Since this formula has positive measure, countable additivity again implies
that there is some b ∈ N \ a such that

β := µ(Jψ(a, b) ∧ θ(a)K) > 0.

By invariance, for any c ∈ N \ a, we also have

µ(Jψ(a, c) ∧ θ(a)K) = β.
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But θ ensures that ψ(a, b)∧θ(a) and ψ(a, c)∧θ(a) are inconsistent when b 6= c,
so, computing the measure of the disjoint union,

µ
(⋃

b∈N\aJψ(a, b) ∧ θ(a)K
)

=
∑

b∈N\a β =∞,

which is impossible. �

In the language of §2.1, the main result of [AFP16] was a characterization
of those countable structures M such that there exists an ergodic structure µ
which is almost surely isomorphic to M . That characterization was given in
terms of trivial “group-theoretic” dcl (where the group is Aut(M)).

Definition 2.20. A countable structure M has trivial group-theoretic dcl
if for any finite subset A ⊆M and element b ∈M \A, there is an automorphism
σ ∈ Aut(M) such that σ(a) = a for all a ∈ A, but σ(b) 6= b.

Theorem 2.21 ([AFP16, Theorem 1.1]). Let M be a countable structure. There
exists an ergodic structure concentrating on M if and only if M has trivial
group-theoretic dcl.

Remark 2.22. The method in [AFP16] of obtaining a measure via i.i.d. sampling
from a Borel structure, which we use again in Section 6, always produces an
ergodic measure. This was mentioned in passing in [AFP16], though not stated
as part of the main theorem; for a proof, see [AFKP17, Proposition 2.24]. See
also Theorem 2.28 and Lemma 6.2 below.

It is a consequence of Scott’s Theorem (Theorem 2.3) that the notion of
trivial group-theoretic dcl for a countable structure M is equivalent to the usual
(syntactic) trivial dcl for ThFM (M) in an appropriate countable fragment FM
of Lω1,ω. That is, given a finite subset A of M , an element b ∈ M is fixed by
all automorphisms fixing A pointwise if and only if there is a formula from FM
with parameters from A which uniquely defines b in M .

Unlike the group-theoretic notion of trivial dcl, which is defined for a given
structure, the syntactic notion of trivial dcl (Definition 2.17) is defined for
theories in arbitrary countable fragments, and so is the relevant notion for this
paper.

2.3. Π−2 sentences. It is a well-known fact, originally due to Chang [Cha68,
pp. 48–49], that if T is a theory in a countable fragment F of Lω1,ω, then the
models of T are exactly the reducts to L of the models of a countable first-order
theory T ′ in a larger countable language L′ ⊇ L that omit a countable set of
types Q.

The idea is to Morleyize: we introduce a new relation symbol Rϕ for every
formula ϕ(x) in F and encode the intended interpretations of the Rϕ in the
theory T ′. The role of the countable set of types Q is to achieve this for infinitary
conjunctions and disjunctions, which cannot be accounted for in first-order logic.
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There are two features of this construction that will be useful for us. First,
it reduces F -types to quantifier-free types. Second, T ′ can be axiomatized by
Π1 sentences together with pithy Π2 sentences (also called “one point extension
axioms”).

Definition 2.23. A first-order sentence is pithy Π2 if it has the form ∀x ∃y ϕ(x, y),
where ϕ(x, y) is quantifier-free, x is a tuple of variables (possibly empty), and y
is a single variable. We call a sentence Π−2 if it is either pithy Π2 or is Π1. A Π−2
theory is a set of Π−2 sentences.

Note that, in the context of this paper, all Π−2 theories are first-order.

Theorem 2.24. Let F be a countable fragment of Lω1,ω and T an F -theory.
Then there is a language L′ ⊇ L, an L′-theory T ′ that is Π−2 , and a countable
set of partial quantifier-free L′-types Q such that the following hold.

(a) There is a bijection between formulas ϕ(x) in F and atomic L′-formulas
Rϕ(x) which are not in L, such that if M |= T ′ omits all the types in Q,
then M |= ∀xϕ(x)↔ Rϕ(x).

(b) The reduct to L is a bijection between the class of models of T ′ omitting all
the types in Q and the class of models of T .

Proof. Let L′ = L∪ {Rϕ | ϕ(x) ∈ F}, where the arity of the relation symbol Rϕ

is the length of the tuple x. By convention, we allow 0-ary relation symbols (i.e.,
propositional symbols). Thus, we include a 0-ary relation Rψ for every sentence
ψ ∈ F .

Let Tdef be the theory consisting of the following axioms, for each formula
ϕ(x) ∈ F :

(1) ∀x
(
Rϕ(x)↔ ϕ(x)

)
, if ϕ(x) is atomic.

(2) ∀x
(
Rϕ(x)↔ ¬Rψ(x)

)
, if ϕ is of the form ¬ψ(x).

(3) ∀x
(
Rϕ(x)↔ Rψ(x) ∧Rθ(x)

)
, if ϕ is of the form ψ(x) ∧ θ(x).

(4) ∀x
(
Rϕ(x)↔ Rψ(x) ∨Rθ(x)

)
, if ϕ is of the form ψ(x) ∨ θ(x).

(5) ∀x
(
Rϕ(x)→ Rψi(x)

)
for all i ∈ I, if ϕ is of the form

∧
i∈I ψi(x).

(6) ∀x
(
Rψi(x)→ Rϕ(x)

)
for all i ∈ I, if ϕ is of the form

∨
i∈I ψi(x).

(7) ∀x
(
Rϕ(x)↔ ∀y Rψ(x, y)

)
, if ϕ is of the form ∀y ψ(x, y).

(8) ∀x
(
Rϕ(x)↔ ∃y Rψ(x, y)

)
, if ϕ is of the form ∃y ψ(x, y).

Note that all the axioms of Tdef are first-order and universal except for those of
type (7) and (8), which are Π−2 when put in prenex normal form.

The axioms of type (5) and (6) cannot be made into bi-implications, since
arbitrary countable infinite conjunctions and disjunctions are not expressible
in first-order logic. To ensure that the corresponding Rϕ have their intended
interpretation, we let Q consist of the partial quantifier-free types:

(i) qϕ(x) = {Rψi(x) | i ∈ I} ∪ {¬Rϕ(x)}, for all ϕ(x) of the form
∧
i∈I ψi(x)

(ii) qϕ(x) = {¬Rψi(x) | i ∈ I} ∪ {Rϕ(x)}, for all ϕ(x) of the form
∨
i∈I ψi(x).
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It is now straightforward to show by induction on the complexity of formulas
that if a model M |= Tdef omits every type in Q, then for all ϕ(x) in F and
all a from M , we have M |= ϕ(a) if and only if M |= Rϕ(a). This establishes
(a). It also implies that every L-structure N admits a unique expansion to
an L′-structure N ′ which is a model of Tdef and omits every type in Q. As a
consequence, if we set T ′ = Tdef ∪ {Rψ | ψ ∈ T}, then the following hold.

• If M is a model of T ′ which omits every type in Q, then the reduct M � L
is a model of T .
• If N |= T , then the canonical expansion N ′ of N is a model of T ′.
• If M |= T ′ then (M � L)′ = M .
• If N |= T then N ′ � L = N .

This establishes (b). �

Recall that an ergodic L-structure is an ergodic invariant measure on StrL.

Corollary 2.25. There is a bijection between the invariant measures on StrL
which almost surely satisfy T and the invariant measures on StrL′ which almost
surely satisfy T ′ and omit all the types in Q. This bijection sends ergodic
structures to ergodic structures and properly ergodic structures to properly ergodic
structures.

Proof. The reduct �L is a continuous map StrL′ → StrL, since the preimages
of clopen sets in StrL are also clopen sets in StrL′ . By Theorem 2.24, �L is a
bijection between the subspace X ′ of StrL′ consisting of models of T ′ which
omit all the types in Q and the subspace X of StrL consisting of models of T .
Upon restricting to these subspaces, the inverse of �L is a Borel map, since the
image of a clopen set in X ′ (described by a quantifier-free formula) is a Borel
set in X (described by a formula of Lω1,ω). Hence �L is a Borel isomorphism
between these subspaces, and it induces a bijection between the set of probability
measures on StrL′ concentrating on X ′ and the set of probability measures on
StrL concentrating on X. Moreover, �L preserves the logic action, so the induced
bijection on measures preserves invariance, ergodicity, and proper ergodicity. �

2.4. The Aldous–Hoover–Kallenberg theorem and representations. In
this section, we state a version of the Aldous–Hoover–Kallenberg theorem. This
theorem, which is a generalization of de Finetti’s theorem to exchangeable arrays
of random variables, was discovered independently by Aldous [Ald81] and Hoover
[Hoo79], and further developed by Kallenberg [Kal92] and others. For proofs,
we direct the reader to Kallenberg’s book [Kal05, Chapter 7]. See [Ack15, §2.5]
for a discussion of how to translate from the purely probabilistic statements in
Kallenberg to the setting here, involving spaces of quantifier-free types. The
survey by Austin [Aus08] provides details on its application to random structures.

We denote by [n] the set {0, . . . , n− 1}, by N[n] the set of n-tuples of distinct
elements of N (that is, injective functions [n]→ N), and by Pfin(N) the set of all
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finite subsets of N. Given a tuple a ∈ N[n], we denote by ||a|| the set in Pfin(N)
enumerated by a.

Let Snqf(L) be the Stone space of quantifier-free n-types. Its points are the com-
plete quantifier-free types in the variables x0, . . . , xn−1, and its topology is gen-
erated by the clopen sets Jϕ(x)K = {p(x) ∈ Snqf(L) | ϕ ∈ p} for all quantifier-free
formulas ϕ. Note that Snqf(L) admits an action of the symmetric group Sym(n)
(the permutation group of [n]), by σ(p(x0, . . . , xn−1)) = p(xσ(0), . . . , xσ(n−1))

for σ ∈ Sym(n). We write S
[n]
qf (L) for the Sym(n)-invariant subspace of non-

redundant quantifier-free types, namely those which contain xi 6= xj for all
i 6= j.

We let (ξA)A∈Pfin(N) be a collection of independent random variables, each
uniformly distributed on [0, 1]. We think of ξA as a source of randomness sitting
on the subset A, which we will use to build a random L-structure with domain
N. If a ∈ N[n], the injective function i : [n] → N enumerating a associates to

each X ∈ P([n]) a subset i[X] ⊆ ||a||. We denote by ξ̂a the family of random
variables (ξi[X])X∈P([n]).

Definition 2.26. An AHK system is a collection of measurable functions

(fn : [0, 1]P([n]) → S
[n]
qf (L))n∈N

satisfying the coherence conditions:

• For all σ ∈ Sym(n), almost surely

fn((ξσ[X])X⊆[n]) = σ(fn((ξX)X⊆[n])).

• For all 0 ≤ m ≤ n, almost surely

fm((ξX)X⊆[m]) ⊆ fn((ξY )Y⊆[n]).

That is, fn takes as input a collection of values in [0, 1], indexed by P([n]), and
produces a non-redundant quantifier-free n-type. Using our random variables
ξA, we have a natural notion of sampling from an AHK system to obtain a

non-redundant quantifier-free type ra = fn(ξ̂a) for every finite tuple a from N.
Note that the order in which ||a|| is enumerated by the tuple a is significant,
since fn is, in general, not symmetric in its arguments.

The coherence conditions ensure that the quantifier-free types obtained from
the function fn cohere (almost surely), allowing us to define the random structure
M obtained by sampling from the AHK system (fn). Namely, for every tuple
a ∈ N,

M |= R(a) if and only if R(x) ∈ fn(ξ̂a),

where n is the length of a.
One may also directly describe the measure on StrL which is the distribution

of the random structure M: an AHK system (fn)n∈N gives rise to a well-defined
finitely-additive probability measure µ∗ on the Boolean algebra B∗ of clopen sets
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in StrL, defined by

µ∗(Jϕ(a)K) = λP([n])(f−1
n [Jϕ(x)K]),

where λP([n]) is the uniform product measure on [0, 1]P([n]). This is the probability
that ϕ(x) ∈ ra, whenever a is a tuple of n distinct elements. The coherence
conditions imply that this is well-defined: the first ensures that the order in
which we list the variables in ϕ(x) is irrelevant, and the second ensures that the
measure is independent of the variable context x.

Since the value of µ∗(Jϕ(a)K) does not depend on the choice of tuple a of distinct
elements, µ∗ is manifestly invariant under the logic action. By Proposition 2.6,
µ∗ induces a unique invariant Borel probability measure µ on StrL. In this case,
we say that (fn)n∈N is an AHK representation of µ.

Theorem 2.27 (Aldous–Hoover–Kallenberg). Every invariant probability mea-
sure µ on StrL has an AHK representation.

Once a proper translation of notation is applied, Theorem 2.27 is equivalent
to [Kal05, Theorem 7.22], which is usually called the Aldous–Hoover–Kallenberg
theorem. For more on such a translation see [Ack15, §2.5].

The AHK representation produced by Theorem 2.27 is not unique, but it
is unique up to certain appropriately measure-preserving transformations. See
[Kal05, Theorem 7.28] for a precise statement.

The key fact to observe about AHK systems is that if a and b are tuples from
N whose intersection ||a|| ∩ ||b|| is enumerated by the tuple c, then the random

quantifier-free types ra and rb are conditionally independent over ξ̂c. If a and b

are disjoint, then ξ̂c = ξ∅.
The Aldous–Hoover–Kallenberg theorem also provides a characterization of

the ergodic measures among the invariant measures on StrL: they are those
measures for which the random quantifier-free types ra and rb are independent
when a and b are disjoint. Formally, for an n-tuple a from N, let Σa be the
σ-algebra on StrL generated by the sets Jϕ(a)K, where ϕ(x) ranges over the
quantifier-free formulas in the n-tuple of variables x. We say that an invariant
probability measure µ on StrL is dissociated if whenever a and b are disjoint
tuples from N, the σ-algebras Σa and Σb are independent (see Remark 2.7 above).

Theorem 2.28 ([Kal05, Lemma 7.35]). Let µ be an invariant probability measure
on StrL. The following are equivalent:

(1) µ is ergodic.
(2) µ is dissociated.
(3) µ has an AHK representation in which the functions fn do not depend

on the argument indexed by ∅.
The result [Kal05, Lemma 7.35] is stated for finite relational languages, but

can be generalized to our setting by a careful modification of the proofs, as
described in [Ack15, Corollary 2.18].
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3. Examples

In this section, we describe some examples of properly ergodic structures and
their theories, as well as theories all of whose ergodic models are not properly
ergodic. In doing so, we highlight some of the key notions of the paper, including
trivial definable closure and rootedness, and the relevance of infinitary logic.
Certain examples are naturally described using infinite languages, but for some
we also describe how they may be framed in terms of finite languages.

When we say that we pick a random element A ∈ 2N, we always refer to the
uniform (Lebesgue) measure on 2N, the infinite product of the Bernoulli(1/2)
measure on 2 = {0, 1}. We identify such an A ∈ 2N with both a subset of N and
an infinite binary sequence.

Our first example of a class of properly ergodic structures arose naturally in
the study of random graphs.

Example 3.1 (Random geometric graphs). Consider a metric space (X, d), a
probability measure m on X, and a real number p ∈ (0, 1). Bonato and Janssen
[BJ11] define the random geometric graph given by first sampling an m-i.i.d.
sequence of vertices D ⊆ X and then connecting two points x, y ∈ D such that
d(x, y) < 1 by an edge or not based on an independent weight-p coin flip. The
distribution of this random construction is an ergodic structure.

Bonato and Janssen showed that when the metric space is `n∞ for some n,
the random geometric graph is almost surely isomorphic to a single countable
graph, but that on the other hand, the Euclidean plane yields a properly ergodic
structure. In fact, as shown in [BBG+15], every normed linear space other than
`n∞ yields a properly ergodic structure.

The next class of examples, which was introduced in [AFNP16, §5.1], can be
thought of as countably many overlaid instances of the Erdős–Rényi random
(hyper-)graphs. These are some of the key examples of properly ergodic structures,
based on which we also will build several variants.

Example 3.2 (Kaleidoscope structures). We begin by describing the case of binary
relations. Let L = {Rn | n ∈ N}, where each Rn is a binary relation symbol.
The interpretation of each Rn will be irreflexive and symmetric; one may think
of each Rn as a different “color” of edge.

Consider the random L-structure with domain N obtained by first picking a
random A{i,j} ∈ 2N independently for each pair of distinct elements i, j ∈ N, and
then setting iRnj just when n ∈ A{i,j}. Let µ be the distribution of this random
structure.

Observe that the measure µ is invariant, since the random quantifier-free type
of a tuple of distinct elements does not depend on the choice of tuple. Further,
µ is ergodic by Theorem 2.28, since the random quantifier-free types of disjoint
tuples are independent. We call this ergodic structure µ the kaleidoscope
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random graph. (Note that in [AFNP16], this term is used instead to refer to
models of its almost-sure first-order theory.)

Note that there are continuum-many quantifier-free 2-types consistent with
ThFO(µ), each of which is realized with probability 0 in µ. Any particular
countable L-structure realizes at most countably many such types, and so µ
assigns measure 0 to its isomorphism class. Hence µ is properly ergodic.

In fact, for every A ∈ 2N, the theory Th(µ) contains the sentence

¬∃x ∃y
(∧
n∈A

xRny ∧
∧
n/∈A

¬xRny
)
.

Since all quantifier-free 2-types consistent with ThFO(µ) are ruled out by Th(µ),
the theory Th(µ) has no models of any cardinality. In fact, the complete Lω1,ω-
theory of any properly ergodic structure has no models of any cardinality, as
shown in Corollary 4.9. Note, however, that any countable fragment F of Lω1,ω

only contains countably many of the sentences above, so ThF (µ) only rules out
countably many of the quantifier-free 2-types.

Restricting to the first-order fragment, the theory ThFO(µ) has several nice
properties. It is the model companion of the universal theory asserting that each
Rn is irreflexive and symmetric. It can be axiomatized by extension axioms,
analogous to those in the theory of the Rado graph: in each finite sublanguage
L∗ ⊆ L, for every finite tuple A and non-redundant quantifier-free 1-type over A
in the language L∗ consistent with ThFO(µ), there is some element b satisfying
that quantifier-free type. The reduct of ThFO(µ) to any finite sublanguage is
countably categorical, but ThFO(µ) has continuum-many countable models (since
there are continuum-many quantifier-free 2-types consistent with ThFO(µ)). In
fact, for all countable fragments F and properly ergodic structures µ, the theory
ThF (µ) has continuum-many countable models, as we also show in Corollary 4.9.

For arbitrary arity k ≥ 1, an analogous construction produces the kalei-
doscope random k-uniform hypergraph. We call the case k = 1 the
kaleidoscope random predicate.

We now use the latter example to illustrate the distinction between group-
theoretic and syntactic definable closure.

Example 3.3 (The theory of the kaleidoscope random predicate). Let T be the
first-order theory of the kaleidoscope random predicate (see Example 3.2) in
the language {Pn | n ∈ N}. The theory T says that for every m ∈ N and every
subset A ⊆ [m], there is an element x such that for all n ∈ [m], the relation
Pn(x) holds if and only if n ∈ A.

Now let T ′ be T together with the infinitary sentence

∀x∀y (
∧
n∈N

(Pn(x)↔ Pn(y))→ x = y).
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The kaleidoscope random predicate almost surely satisfies T ′. Each of the
continuum-many quantifier-free 1-types is realized with probability 0, and since
the quantifier-free 1-types of distinct elements of N are independent, almost
surely no 1-type is realized more than once.

In a model M of T ′, no two elements have the same quantifier-free 1-type.
Hence Aut(M) is the trivial group, and M has non-trivial group-theoretic dcl. Let
F be the countable fragment of Lω1,ω generated by T ′. Then F does not contain
the conjunctions of the form

∧
n∈A Pn(x) ∧

∧
n/∈A ¬Pn(x) for A ⊆ N needed to

pin down elements uniquely. In fact, the complete F -theory of the kaleidoscope
random predicate (which extends T ′) has trivial dcl, by Theorem 2.19.

We will see that the presence of a formula χ(x) of positive measure, such that
every type containing χ has probability 0 of being realized, is a characteristic
feature of properly ergodic structures.

In the kaleidoscope random graph (Example 3.2), x 6= y is such a formula
χ(x, y), since every non-redundant quantifier-free 2-type is realized with proba-
bility 0. In contrast to the kaleidoscope random graph, Example 3.4 shows that
there are properly ergodic structures in which these 0-probability types have
infinitely many realizations if they are realized at all.

On the other hand, in Example 3.5, we describe a transformation (known
as the “blow-up”), which when applied to the Kaleidoscope random predicate,
leads to each of the continuum-many 1-types being realized infinitely many times
(if at all), and yet whose resulting theory has no properly ergodic models. This
shows that merely having continuum-many types in a theory with trivial dcl
does not imply the existence of a properly ergodic model of the theory.

These phenomena motivate the definition of rootedness in Section 5.

Example 3.4 (The max random graph). As in Example 3.2, let L = {Rn | n ∈ N},
where each Rn is a binary relation symbol. We build a random L-structure with
domain N such that the interpretation of each Rn is irreflexive and symmetric.
For each i ∈ N, independently choose a random element Ai ∈ 2N. Now for each
pair {i, j}, let Aij = max(Ai, Aj), where we give 2N its lexicographic order. We
set iRnj if and only if n ∈ Aij.

We have continuum-many quantifier-free 2-types {pA | A ∈ 2N}, where xRny ∈
pA if and only if n ∈ A, and each is realized with probability 0, since if (i, j)
realizes pA, we must have Ai = A or Aj = A.

As long as Ai is not the constant 0 sequence (which appears with probability 0),
then for any j 6= i, there is a positive probability, conditioned on the choice of Ai,
that Aj ≤ Ai, and hence qftp(i, j) = pAi . Since the Aj are chosen independently,
almost surely the event Aj ≤ Ai occurs for infinitely many j. So, almost surely,
any non-redundant quantifier-free 2-type that is realized is realized infinitely
many times. However, since the probability that Ai = Aj when i 6= j is 0, almost
surely all realizations of pAi have a common intersection, namely the vertex i.
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We now describe a modification of the theory of the kaleidoscope random
predicate so that all of its ergodic models are not properly ergodic.

Example 3.5 (The blow-up of the theory of the kaleidoscope random predicate).
Let L = {E}∪ {Pn | n ∈ N}, and let T be the model companion of the universal
theory asserting that E is an equivalence relation and the Pn are unary predicates
respecting E (if xEy, then Pn(x) if and only if Pn(y)). This is similar to the
first-order theory of the kaleidoscope random predicate, but with each element
replaced by an infinite E-class.

There is no properly ergodic structure that satisfies T almost surely. Indeed,
suppose µ |= T . Then for every quantifier-free 1-type p, there is some probability
µ(p) that p is the quantifier-free type of the element i ∈ N, and, by invariance,
µ(p) does not depend on the choice of i. We denote by S1

qf(µ) the (countable) set of
quantifier-free 1-types with positive measure. If

∑
p∈S1

qf(µ) µ(p) = 1, then almost

surely only the types in S1
qf(µ) are realized, since µ |= ∀x

∨
p∈S1

qf(µ)

∧
ϕ∈p ϕ(x).

Further, µ determines, for each p ∈ S1
qf(µ), the number of E-classes on which p

is realized (among {1, 2, . . . ,ℵ0}), since each of the countably many choices is
expressible by a sentence of Lω1,ω. The data of which quantifier-free 1-types are
realized, and how many E-classes realize each, determines a unique countable
L-structure up to isomorphism, so µ is not properly ergodic.

On the other hand, if
∑

p∈S1
qf(µ) µ(p) < 1, then almost surely some types that

are not in S1
qf(µ) are realized. Any such type p is realized with probability

0, and, by ergodicity, the quantifier-free 1-types of distinct elements of N are
independent. So, almost surely, each of the 0-probability types is realized at
most once. This contradicts the fact that any realized type must be realized on
an entire infinite E-class.

The next example shows why it important to use Lω1,ω when performing the
Morley–Scott analysis.

Example 3.6 (A kaleidoscope-like bipartite graph). Let L = {P}∪{Ri
j | i, j ∈ N},

where P is a unary predicate and the Ri
j are binary relations, and let T be the

model companion of the following universal theory:

(1) ∀x∀y (Ri
j(x, y)→ (P (x) ∧ ¬P (y))) for all i and j.

(2) ∀x∀y ¬(Ri
0(x, y) ∧Ri′

0 (x, y)) for all i 6= i′.
(3) ∀x∀y (Ri

j+1(x, y)→ Ri
j(x, y)) for all i and j.

Thus, a model of T is a bipartite graph in which each edge from x to y is
labeled by some i ∈ N (in the superscript) and the set of all j < k for some
k ∈ N+∪{∞} (in the subscript), where N+ denotes the positive natural numbers.

Now T is a complete theory with quantifier elimination and with only count-
ably many quantifier-free types over ∅. Hence, by countable additivity, if µ is
an ergodic structure that satisfies T almost surely, then there is no positive-
measure first-order formula χ(x) such that every type containing χ has measure
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0. Nevertheless, we will describe a properly ergodic structure that almost surely
satisfies T .

First, for each x ∈ N, let P (x) hold with independent probability 1/2, and pick
Ax ∈ 2N independently at random. Now for each pair x 6= y, if P (x) and ¬P (y),
then we choose which of the Ri

j will hold of (x, y). First independently choose
i ∈ N according to a geometric distribution where i = n holds with probability
2−(n+1). Then, if i ∈ Ax, independently choose k ∈ N+ ∪ {∞} according to
a geometric distribution where k = ∞ holds with probability 1/2 and k = n
holds with probability 2−(n+1) for n ∈ N+. On the other hand, if i /∈ Ax, then
independently choose k ∈ N+ according to a geometric distribution where k = n
holds with probability 2−n. Finally, for this choice of i and k, we let Ri

j(x, y)
hold for all j < k.

In the resulting random structure, we can almost surely recover Ax from every
x ∈ P , since if i ∈ Ax, then almost surely there is some y such that Ri

j(x, y) for
all j ∈ N (that is, the choice k =∞ was made for the pair (x, y)), whereas this
outcome is impossible if i /∈ Ax. Thus the structure encodes a countable set of
elements of 2N, each of which occurs with probability 0.

The information encoding Ax is part of the 1-type of x in any countable
fragment of Lω1,ω containing the infinitary formulas {∃y

∧
j∈NR

i
j(x, y) | i ∈ N},

but it is not expressible in first-order logic.

With the exception of Example 3.1 (and Gábor Kun’s example alluded to
in §1.2), the preceding examples have all used infinite languages, as this is
the easiest setting in which to split the measure over continuum-many types.
We conclude with an elementary example in the language with a single binary
relation, which encodes the kaleidoscope random predicate into a directed graph,
in a way that we easily verify is properly ergodic.

Example 3.7 (A directed graph encoding the kaleidoscope random predicate).
Let L = {R}, where R is a binary relation. In our probabilistic construction, we
will enforce the following almost surely:

• Let O = {x | R(x, x)}, and P = {x | ¬R(x, x)}. Then O and P are both
infinite sets.
• If R(x, y), then either x and y are both in O, or x is in P and y is in O.
• R is a preorder on O. Denote by xEy the induced equivalence relation
R(x, y) ∧ R(y, x). Then E has infinitely many infinite classes, and R
linearly orders the E-classes with order type ω.
• Given x ∈ P and y, z ∈ O, if R(x, y) and yEz, then R(x, z). So R relates

each element of P to some subset of the E-classes.

Thus we can interpret the kaleidoscope random predicate on P , where the nth

predicate Pn holds of x if and only if x is R-related to the nth class in the linear
order on O.
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Now it is straightforward to describe the probabilistic construction: for each
i ∈ N, independently let R(i, i) hold with probability 1/2. This determines
whether i is in O or P . If i ∈ O, we choose which E-class to put i in, under
the order induced by R, selecting the nth class independently with probability
2−(n+1). These choices determine all the R-relations between elements of O. On
the other hand, if i ∈ P , we pick Ai ∈ 2N independently at random and relate i
to each the nth class in O if and only if n ∈ Ai.

This describes an ergodic structure µ, since the quantifier-free types of disjoint
tuples are independent. We obtain the properties described in the bullet points
above almost surely, and since ω is rigid, any isomorphism between structures
satisfying these properties must preserve the order on the E-classes. For any
subset of the E-classes, the probability is 0 that there is an element of P which
is related to exactly those E-classes, and so µ is properly ergodic.

4. Morley–Scott analysis of ergodic structures

Throughout this section, let µ be an ergodic structure. Recall from Re-
mark 2.16 that for a countable fragment F of Lω1,ω and an F -type p, the
abbreviation θp(x) means

∧
ϕ∈p ϕ(x), and the notation µ(p) means µ(θp(x)) and

is called the measure of p.

Definition 4.1. We denote by SnF (µ) the set {p | µ(p) > 0} of positive-
measure F -types in the variables x0, . . . , xn−1. We include the case n = 0:
S0
F (µ) has one element, namely ThF (µ).

Lemma 4.2. For all n ∈ N, we have |SnF (µ)| ≤ ℵ0.

Proof. Fix a tuple a of distinct elements from ω. The sets {Jθp(a)K | p ∈ SnF (µ)}
are disjoint sets of positive measure in StrL. By additivity of µ, for all m ∈ N,
Pm = {p ∈ SnF (µ) | µ(p) ≥ 1/m} is finite (of size at most m), so SnF (µ) =

⋃
m∈ω Pm

is countable. �

We build a sequence {Fα}α∈ω1 of countable fragments of Lω1,ω of length ω1,
depending on the ergodic structure µ:

F0 = FO, the first-order fragment.

Fα+1 = the fragment generated by Fα ∪
{
θp(x) | p ∈

⋃
n∈N

SnFα(µ)
}
.

Fγ =
⋃
α<γ

Fα, if γ is a limit ordinal.

Definition 4.3. We say that p ∈ SnFα(µ) splits at β > α if µ(q) < µ(p) for all
types q ∈ SnFβ(µ) such that p ⊆ q. We say that p splits later if there exists β
such that p splits at β. We say that µ has stabilized at γ if for all n ∈ N, no
type in SnFγ (µ) splits later.
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Lemma 4.4. Let α < β < γ.

(1) If a type p ∈ SnFα(µ) splits at β, then p also splits at γ.
(2) Suppose p ∈ SnFβ(µ) splits at γ. Then p′ = p ∩ Fα is in SnFα(µ) and also

splits at γ.
(3) If no type in SnFα(µ) splits later, then no type in SnFβ(µ) splits later.

Proof. (1) Pick q ∈ SnFγ (µ) with p ⊆ q, and let q′ = q ∩Fβ. Then µ(q) ≤ µ(q′) <

µ(p), since p splits at β.

(2) First, 0 < µ(p) ≤ µ(p′), so p′ ∈ SnFα(µ). Pick q ∈ SnFγ(µ) such that p′ ⊆ q.

If p ⊆ q, then µ(q) < µ(p) ≤ µ(p′), since p splits at γ. And if p 6⊆ q, then
µ(q) ≤ µ(p′)− µ(p) < µ(p′), since µ(p) > 0. In either case, µ(q) < µ(p′), so p′

splits at γ.

(3) If some type in SnFβ(µ) splits later, then by (2), p′ = p ∩ Fα also splits later,

and p′ ∈ SnFα(µ). �

Lemma 4.5. There is some countable ordinal γ such that µ has stabilized at γ.

Proof. Fix n ∈ N. For each α ∈ ω1, let

Sp(α) = {p ∈ SnFα(µ) | p splits later},
rα = sup{µ(p) | p ∈ Sp(α)}.

Note that Sp(α) is countable, since SnFα is. If Sp(α) is non-empty, then
rα > 0, and in fact the supremum is achieved by finitely many types, since∑

p∈Sp(α) µ(p) ≤ 1.

By Lemma 4.4 (2), the measure of any type in Sp(β) is bounded above by the
measure of a type in Sp(α), namely its restriction to Fα. So we have rβ ≤ rα
whenever α < β.

Now assume for a contradiction that Sp(α) is non-empty for all α. We build
a strictly increasing sequence 〈αδ〉δ∈ω1 in ω1, such that 〈rαδ〉δ∈ω1 is a strictly
decreasing sequence in [0, 1]. Begin with α0 = 0.

At each successor stage, we are given α = αδ, and we seek β = αδ+1 with
rβ < rα. Since Sp(α) is non-empty, there are finitely many types p1, . . . , pn of
maximal measure rα > 0. For each i, pick βi > α such that pi splits at βi, and
let β = max(β1, . . . , βn). By Lemma 4.4 (1), each pi splits at β. Let q be a type
in Sp(β) with µ(q) = rβ, and let q′ = q ∩ Fα. By Lemma 4.4 (2), q′ ∈ Sp(α).
If q′ is one of the pi, then µ(q) < µ(pi) = rα, since pi splits at β. If not, then
µ(q) ≤ µ(q′) < rα. In either case, rβ = µ(q) < rα.

If λ is a countable limit ordinal, let αλ = supδ<λ αδ. This is an element of ω1,
since ω1 is regular. And for all δ < λ, since αδ+1 < αλ, we have rαλ ≤ rαδ+1

< rαδ .
Of course, there is no strictly decreasing sequence of real numbers of length

ω1, since R contains a countable dense set. Hence there is some γn ∈ ω1 such
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that Sp(γn) is empty, i.e., no type in SnFγn splits later. Let γ = supn∈N γn ∈ ω1.

Then by Lemma 4.4 (3), µ has stabilized at γ. �

We can think of the minimal ordinal γ such that µ has stabilized at γ as an
analogue of the Scott rank for the ergodic structure µ. Since no Fγ-type splits
later, every positive-measure Fγ+1-type q is isolated by the Fγ+1-formula θp for
its restriction p = q ∩ Fγ, relative to ThFγ+1(µ). Lemma 4.6 says that if every
tuple satisfies one of these positive-measure types almost surely, then µ almost
surely satisfies a Scott sentence.

Lemma 4.6. Suppose that µ has stabilized at γ, and that for all n ∈ N,∑
p∈SnFγ (µ)

µ(p) = 1.

Then µ concentrates on a countable structure.

Proof. For each type r(x) ∈ SnFγ(µ) (we include the case n = 0), let Er be the

set of types q(x, y) ∈ Sn+1
Fγ

(µ) with r ⊆ q. Fix a type p(x) ∈ SnFγ(µ), let ϕp be
the sentence

∀x
(
θp(x)→ ∀(y /∈ x)

∨
q∈Ep

θq(x, y)
)
,

and let ψp be the sentence

∀x
(
θp(x)→

∧
q∈Ep

∃(y /∈ x) θq(x, y)
)

Here ∀(y /∈ x)ρ(x, y) and ∃(y /∈ x)ρ(x, y) are shorthand for ∀y((
∧n−1
i=0 y 6= xi)→

ρ(x, y)) and ∃y((
∧n−1
i=0 y 6= xi) ∧ ρ(x, y)), respectively. We would like to show

that µ satisfies ϕp and ψp almost surely.
By assumption, and since every q ∈ Sn+1

Fγ
(µ) is in Er for a unique r ∈ SnFγ (µ),

1 =
∑

q∈Sn+1
Fγ

(µ)

µ(q) =
∑

r∈SnFγ (µ)

∑
q∈Er

µ(q).

Then for all r ∈ SnFγ (µ), we must have

µ(r) =
∑
q∈Er

µ(q).

In particular, this is true for r = p, so for any tuple a and any b not in a,q∨
q∈Ep θq(a, b)

y
has full measure in Jθp(a)K (this is true even when a contains

repeated elements, since in that case Jθp(a)K has measure 0). A countable
intersection (over b ∈ N \ ||a||) of subsets of Jθp(a)K with full measure still has
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full measure, so

µ
(r
θp(a)→ ∀(y /∈ a)

∨
q∈Ep

θq(a, y)
z)

= 1.

Taking another countable intersection over all tuples a, we have µ |= ϕp.
We turn now to ψp. Since µ stabilizes at γ, there is a (necessarily unique)

extension of p to a type p∗ ∈ SnFγ+1
(µ) with µ(p∗) = µ(p). Let q(x, y) be

any type in Ep, and let υq(x) ∈ Fγ+1 be the formula (∃y /∈ x) θq(x, y). Note
that θq(x, y) implies υq(x) and υq(x) implies θp(x). So µ(υq(x)) ≥ µ(q) > 0,
and we must have υq(x) ∈ p∗, otherwise µ(p∗) ≤ µ(p) − µ(υq(x)). Finally, we
conclude that for any tuple a, the set Jυq(a)K has full measure in Jθp(a)K, since
µ(p) = µ(p∗) ≤ µ(υq(x)) ≤ µ(p).

As before, a countable intersection of subsets with full measure has full
measure, so

µ
(r
θp(a)→

∧
q∈Ep

∃(y /∈ a) θq(a, y)
z)

= 1.

Taking another countable intersection over all tuples a, we have µ |= ψp.
Let T = ThFγ (µ) ∪ {ϕp, ψp | p ∈

⋃
n∈N S

n
Fγ

(µ)}, and note that T is countable.
Since µ almost surely satisfies T , it suffices to show that any two countable
models of T are isomorphic. This is a straightforward back-and-forth argument,
using ϕp and ψp to extend a partial Fγ-elementary isomorphism defined on a
realization of p by one step: ϕp tells us that each one-point extension in one
model realizes one of the types in Ep, and ψp tells us that every type in Ep is
realized in a one-point extension in the other model. To start, the empty tuples
in any two models of T satisfy the same Fγ-type, namely ThFγ (µ). �

Theorem 4.7. Let µ be an ergodic structure. Then µ is properly ergodic if and
only if for every countable fragment F of Lω1,ω, there is a countable fragment
F ′ ⊇ F and a formula χ(x) in F ′ such that µ(χ(x)) > 0, but µ(p) = 0 for every
F ′-type p(x) containing χ(x).

Proof. Suppose µ is properly ergodic. By Lemma 4.5, µ stabilizes at some γ,
and by Lemma 4.6, there is some n such that

∑
p∈SnFγ (µ) µ(p) < 1. Let χ(x) be

the formula
∧
p∈SnFγ (µ) ¬θp(x). Then µ(χ(x)) > 0.

Let F ′ be the countable fragment generated by F ∪ Fγ ∪ {χ(x)}, and suppose
that p(x) is an F ′-type containing χ(x). Let q = p ∩ Fγ. Then q is an Fγ type
that is consistent with χ(x), so q /∈ SnFγ (µ), and µ(p) ≤ µ(q) = 0.

Conversely, suppose we have such a fragment F ′ and such a formula χ(x).
Since µ(χ(x)) > 0, by ergodicity, µ |= ∃xχ(x). Let M be a countable structure.
If M contains no tuple satisfying χ, then µ assigns measure 0 to the isomorphism
class of M . On the other hand, if M contains a tuple a satisfying χ(x), then
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since µ assigns measure 0 to the set of structures realizing tpF ′(a), it also assigns
measure 0 to the isomorphism class of M . So µ is properly ergodic. �

By countable additivity, if a sentence ϕ of Lω1,ω has only countably many
countable models up to isomorphism, then any ergodic structure µ that almost
surely satisfies ϕ is almost surely isomorphic to one of its models. That is, no
ergodic model of ϕ is properly ergodic. We show now that the same is true if ϕ
is a counterexample to Vaught’s conjecture, i.e., a sentence with uncountably
many, but fewer than continuum-many, countable models.

Corollary 4.8 (“Vaught’s Conjecture for ergodic structures”). Let ϕ be a
sentence of Lω1,ω. If there is a properly ergodic structure µ such that µ |= ϕ,
then ϕ has continuum-many countable models up to isomorphism.

Proof. This is a consequence of Theorem 4.7 and an observation due to Morley
[Mor70]: for any countable fragment F of Lω1,ω containing ϕ and any n ∈ N, the
set SnF (ϕ) of F -types consistent with ϕ is an analytic subset of 2F . Since analytic
sets have the Perfect Set Property, if |SnF (ϕ)| > ℵ0, then |SnF (ϕ)| = 2ℵ0 . And since
a countable structure realizes only countably many n-types, if |SnF (ϕ)| = 2ℵ0 ,
then ϕ must have continuum-many countable models up to isomorphism.

Now let µ be the given properly ergodic structure, let F be a countable
fragment containing ϕ, let F ′ and χ(x) be as in Theorem 4.7, let n be the
length of the tuple x, and suppose for a contradiction that |SnF ′(ϕ)| ≤ ℵ0. Let
Uχ = {p ∈ SnF ′(ϕ) | χ(x) ∈ p}. Then Uχ is countable, and, by our choice of χ(x),
we have µ(p) = 0 for all p ∈ Uχ. Since µ(JϕK) = 1, for any tuple a of distinct
elements of N, we have

0 < µ(Jχ(a)K) = µ(J(ϕ ∧ χ)(a)K) = µ
( ⋃
p∈Uχ

Jθp(a)K
)

=
∑
p∈Uχ

µ(p),

which is a contradiction, by countable additivity of µ. �

Kechris has observed (in private communication) that Corollary 4.8 also follows
from a result in descriptive set theory [Kec95, Exercise 17.14]: an analogue for
measure of a result of Kuratowski about category [Kur76]. However, our proof
above provides additional model-theoretic information about properly ergodic
structures.

Recall that Th(µ) is the complete Lω1,ω-theory of µ. As noted in Remark 2.12,
µ is properly ergodic if and only if Th(µ) has no countable models. In fact, if µ
is properly ergodic, then Th(µ) has no models at all. This is stronger, since the
Löwenheim–Skolem theorem fails for complete theories of Lω1,ω.

Corollary 4.9. If µ is properly ergodic, then Th(µ) has no models (of any
cardinality). However, for any countable fragment F of Lω1,ω, the theory ThF (µ)
has continuum-many countable models up to isomorphism.
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Proof. Starting with any countable fragment F (e.g., F = FO), let F ′ and χ(x)
be as in Theorem 4.7. Then µ(χ(x)) > 0, so by ergodicity, ∃xχ(x) ∈ Th(µ).
Now if Th(µ) has a model M , then there is some tuple a from M satisfying
χ(x). Let p be the F ′-type of a. Since p contains χ(x), we have µ(p) = 0, and
so ¬∃x θp(x) ∈ Th(µ), a contradiction.

The last assertion follows from Corollary 4.8, taking ϕ =
∧
ψ∈ThF (µ) ψ. �

Corollary 4.9 describes a general version of two phenomena observed for the
Kaleidoscope random graph in Example 3.2.

5. Rooted models

The Morley–Scott analysis in Section 4 showed that proper ergodicity of µ
can always be explained by a positive-measure formula χ(x) such that any type
containing χ(x) has measure 0. In a countable structure sampled from µ, each
of these types of measure 0 will be realized “rarely”. Sometimes “rarely” means
“at most once”, as in Examples 3.2 and 3.3. But in Example 3.4, the max graph,
we saw that a type p of measure 0 can be realized by infinitely many tuples,
all of which share a common element i ∈ N. In that example, if some element
A ∈ 2N is randomly selected at a vertex i, then for any other vertex j, there is a
positive probability that qftp(i, j) is the type pA encoding A. In other words,
the fact that the type pA is realized infinitely many times is explained by the
fact that pA has positive measure, after the random choice of A “living at” the
vertex i. In this section, we will use the Aldous–Hoover–Kallenberg theorem
from §2.4 to show that this behavior is typical.

Throughout this section, let F be a countable fragment of Lω1,ω, and let

T be an F -theory. We write S
[n]
F (T ) for the subspace of SnF (T ) consisting of

non-redundant F -types on x0, . . . , xn−1, i.e., those which contain xi 6= xj for all
i 6= j.

Definition 5.1. Let p ∈ S
[n]
F (T ) be a type realized in M |= T . An element

a ∈M is called a root of p in M if a is an element of every tuple realizing p in

M . We use the same terminology for quantifier-free types in S
[n]
qf (T ).

Remark 5.2. If a type p has a unique realization in M , then p has a root in M
(take any element of the unique tuple realizing p). When n = 1, the converse is

true: a realized type p(x) ∈ S[1]
F (T ) (or S

[1]
qf (T )) has a root in M if and only if it

has a unique realization in M .

Definition 5.3. Let χ(x) is a formula in F such that χ(x)→ (
∧
i 6=j xi 6= xj) ∈ T .

Then a model M |= T is χ-rooted if every type p(x) ∈ S[n]
F (T ) which contains

χ and is realized in M has a root in M . Again, we use the same terminology for
quantifier-free formulas and types.



PROPERLY ERGODIC STRUCTURES 26

Remark 5.4. We note that the property of χ-rootedness is expressible by a
sentence of Lω1,ω, although not necessarily a sentence of F , which asserts that
for every tuple a of distinct elements satisfying χ(x), there is some element ai of
the tuple such that every other tuple b with the same F -type as a contains ai.
Hence the set of χ-rooted models of T is a Borel set in StrL.

Our goal is to prove the following theorem.

Theorem 5.5. Let µ be a properly ergodic structure, F a countable fragment of
Lω1,ω, and χ(x) a formula in F such that µ(χ(x)) > 0 and χ(x)→ (

∧
i 6=j xi 6=

xj) ∈ ThF (µ). Suppose that µ(p) = 0 for every F -type p containing χ(x). Then
µ assigns measure 1 to the set of χ-rooted models of ThF (µ).

The idea of the proof is as follows: We take an AHK representation of µ,
sampling from which involves a family of i.i.d. random variables (ξA)A∈Pfin(N).

For a set B with 0 ≤ |B| ≤ n, we say that an n-type p is likely given ξ̂B if
after conditioning on the random variables (ξA)A∈P(B), the type p has a positive
probability of being realized on a tuple containing all the elements of B (see
Definition 5.7 below).

Now for C ⊆ B, it happens with probability 0 that a particular type p jumps

from being not likely given ξ̂C to being likely given ξ̂B. As a consequence,
it is almost surely the case that for every type p, the family of sets N(p) =

{C | p is likely given ξ̂C} is closed under intersection: given sets A and B, the
probability that the same type jumps from being not likely given A∩B to being

likely given both A and B is 0, since ξ̂A and ξ̂B are conditionally independent

over ξ̂A∩B.
Now for any type p containing χ, the family N(p) contains all the sets on

which p is realized, and it does not contain ∅ (since p has measure 0, and, by
ergodicity, the random variable ξ∅ is irrelevant) so the intersection of all sets on
which p is realized is almost surely nonempty, i.e., if p is realized, then it almost
surely has a root.

Unfortunately, the need to handle all continuum-many types uniformly intro-
duces some technical complications in formalizing this intuitive argument. We
will now tackle those technicalities.

Suppose (fn)n∈N is an AHK representation of an invariant measure µ. It is a
consequence of Lusin’s theorem on measurable functions [Kec95, Theorem 17.12]
that every measurable function differs from a Borel function on a set of measure
0. If gn agrees with fn almost everywhere, we may replace fn by gn in the AHK
system and obtain another AHK representation of µ. Hence, we may assume
that each fn is Borel measurable.

We adopt the notation of §2.4 for the random variables (ξA)A∈Pfin(N): for a

tuple b, we will write ξ̂b to denote the family of random variables (ξA)A⊆||b||.

Similarly, we will write x̂B as a shorthand for a family of values (xA)A∈P(B) ∈
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[0, 1]P(B). If C ⊆ B, we separate the family x̂B into x̂C = (xA)A∈P(C) and

x̂B/C = (xA)A∈P(B)\P(C). If B is enumerated as a tuple b, we will write x̂b.

Definition 5.6. Let p ∈ S[n]
qf (L), and let B ∈ Pfin(N), with |B| = n. Fix values

x̂B ∈ [0, 1]P(B). We say that p is realized given x̂B if there is some enumeration
of B as a tuple b such that p = fn(x̂b).

While the particular type fn(x̂b) depends on the order in which B is enumerated
as a tuple, the set of types which are realized given x̂B does not depend on
the order. Since there are n! ways of enumerating B as a tuple, at most n!
quantifier-free types are realized given x̂B. Recall that part of the definition of
an AHK system is that these types almost surely form an orbit under the action

of Sym(n) on S
[n]
qf (L) by permuting variables.

The set R(B) = {(p, x̂B) | p is realized given x̂B} ⊆ S
[n]
qf (L) × [0, 1]P(B) is

Borel. Indeed,

R(B) =
⋃

b enumerating B

{(fn(x̂b), x̂B) | x̂B ∈ [0, 1]P(B)},

and the graph of a Borel function is a Borel set.
Let C ∈ Pfin(N), with 0 ≤ |C| ≤ n, and pick some C ⊆ B with |B| = n. Let

1R(B) be the indicator function of the event R(B). The Fubini–Tonelli theorem
for Borel measurable functions [Tao11, Theorem 1.7.15] tells us that for all

p ∈ S[n]
qf (L) and x̂C ∈ [0, 1]P(C), the integral∫

x̂B/C∈[0,1]P(B)\P(C)

1R(B)(p, x̂C , x̂B/C) dλ
P(B)\P(C)
0

is defined (here λ0 is the Lebesgue measure on [0, 1], restricted to the Borel
σ-algebra), and that the function

PC : (p, x̂C) 7→
∫
x̂B/C∈[0,1]P(B)\P(C)

1R(B)(p, x̂C , x̂B/C) dλ
P(B)\P(C)
0

is Borel measurable. Abusing terminology somewhat, we call PC(p, x̂C) the
probability of p given x̂C .

Observe that the definition of PC is independent of the choice of B, since

if C ⊆ B′ and f : B → B′ is a bijection fixing C, the induced map S
[n]
qf (L) ×

[0, 1]P(B) → S
[n]
qf (L)× [0, 1]P(B′) carries R(p,B) to R(p,B′).

Definition 5.7. With notation as above, we say that p is likely given x̂C if
the probability of p given x̂C is positive. For fixed values x̂C , we denote by S(x̂C)
the set of non-redundant quantifier-free n-types which are likely given x̂C .

We’d like to show that S(x̂C) is always countable. We’ll need the following
basic measure theory lemma.
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Lemma 5.8. Let (Ω,F , ν) be a probability space, and let (Ei)i∈I be an uncount-
able family of events, each of positive measure. Then there is some x ∈ Ω such
that x is in infinitely many of the Ei.

Proof. Since there are uncountably many events in the family, there is some
ε > 0 such that infinitely many have measure at least ε. Let {Ein | n ∈ N} be a
countable sequence with ν(Ein) ≥ ε for all n. Then define E ′N =

⋃
n≥N Ein , for

n ∈ N . We have ν(E ′N) ≥ ε. By continuity, ν(
⋂
N∈NE

′
N) ≥ ε, so there is some

x ∈
⋂
N∈NE

′
N . This x is in infinitely many of the Ein . �

Lemma 5.9. For any set C with 0 ≤ |C| ≤ n, and any x̂C ∈ [0, 1]P(C), the set
S(x̂C) is countable.

Proof. Pick some C ⊆ B with |B| = n. A type p is likely given x̂C if and only
if the event Ep = {x̂B/C | (p, x̂C , x̂B/C) ∈ R(B)} ⊆ [0, 1]P(B)\P(C) has positive
measure. Since any point x̂B/C is in at most n! of the events Ep (corresponding
to the types fn(x̂b) for the n! enumerations of B as a tuple), by Lemma 5.8, the
set S(x̂C) = {p | Ep has positive measure} is countable. �

Lemma 5.10. For sets D ⊆ C with 0 ≤ |D| ≤ |C| ≤ n, and any x̂D ∈ [0, 1]P(D),
if p is not likely given x̂D, then the set {x̂C/D | p is likely given x̂C} has measure

0 in [0, 1]P(C)\P(D).

Proof. This is just the Fubini–Tonelli theorem. Pick some C ⊆ B with |B| = n
(recall that p is an n-type). Since p is not likely given x̂D, we have

0 =

∫
x̂B/D

1R(B)(p, x̂D, x̂B/D) dλ
P(B)\P(D)
0

=

∫
x̂C/D

(∫
x̂B/C

1R(B)(p, x̂D, x̂C/D, x̂B/C) dλ
P(C)\P(D)
0

)
dλ
P(B)\P(C)
0 .

And the interior integral, which is 0 for almost all values of x̂C/D, is the probability
of p given x̂C . �

Lemma 5.11. Fix sets A,B ∈ Pfin(N), with 0 ≤ |A| ≤ n and 0 ≤ |B| ≤ n,

and let C = A ∩B. Let ξ̂C, ξ̂A = (ξ̂C , ξ̂A/C) and ξ̂B = (ξ̂C , ξ̂B/C) be our random
variables on these sets. Almost surely, every quantifier-free type which is likely

given ξ̂A and likely given ξ̂B is likely given ξ̂C. That is, S(ξ̂C) ⊆ S(ξ̂A) ∩ S(ξ̂B).

Proof. Observe that for any set D, the set {(p, x̂D) | p is likely given x̂D} ⊆
S

[n]
qf (L)× [0, 1]P(D) is Borel. Indeed, it is the preimage of (0, 1] under the Borel

function PD. It follows that the set

{(p, x̂C , x̂A/C , x̂B/C) | p is likely given x̂A and x̂B but not x̂C}

is a Borel subset of S
[n]
qf (L)× [0, 1]P(C)× [0, 1]P(A)\P(C)× [0, 1]P(B)\P(C). Projecting

out the first coordinate, we see that the set

XA,B = {(x̂C , x̂A/C , x̂B/C) | some p is likely given x̂A and x̂B but not x̂C}
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is analytic, and hence measurable (see [Kec95, Theorem 21.10]). Since our
random variables are i.i.d. Lebesgue on [0, 1], we would like to show that XA,B

has measure 0 with respect to the Lebesgue measure on [0, 1]P(C)×[0, 1]P(A)\P(C)×
[0, 1]P(B)\P(C). The knowledge that XA,B is measurable enables us to analyze its
measure fiber-wise, using the Fubini–Tonelli theorem (the version for complete
measures this time, [Tao11, Theorem 1.7.18]).

So consider the fiber XA,B
x̂A

over x̂A = (x̂C , x̂A/C) ∈ [0, 1]P(C) × [0, 1]P(A)\P(C).

XA,B
x̂A

= {x̂B/C | some p is likely given x̂A and x̂B but not x̂C}

=
⋃

p∈S(x̂A)\S(x̂C)

{x̂B/C | p is likely given x̂B}

By Lemma 5.9, this is a countable union, and by Lemma 5.10, each set in the
union has measure 0, so XA,B

x̂A
has measure 0, and, by Fubini–Tonelli, XA,B has

measure 0. �

Proof of Theorem 5.5. We have a properly ergodic structure µ, a countable
fragment F of Lω1,ω, and a distinguished formula χ(x) in F . Let n be the length
of the tuple x. Let L′, T ′, and Q be the language, Π−2 theory, and countable set
of partial quantifier-free types, respectively obtained from Theorem 2.24 for the
fragment F and empty theory T . By Corollary 2.25, µ corresponds to an ergodic
L′-structure µ′, concentrated on those models of T ′ that omit all the types in Q.

For such models, each formula ϕ(y) in F is equivalent to the atomic L′-formula
Rϕ(y), so we have µ′(Rχ(x)) > 0, and for every quantifier-free type q containing
Rχ(x), we have µ′(q) = 0. It suffices to show that an L′-structure M sampled
from µ′ is almost surely Rχ(x)-rooted with respect to quantifier-free types.

By Theorem 2.27, µ′ has an AHK representation (fm)m∈N. And since µ′ is
ergodic, by Theorem 2.28, we can pick the functions fm so they do not depend

on the argument indexed by ∅. As a consequence, S(ξ̂∅) = {p | µ′(p) > 0}.
Indeed, the probability of a type p given ξ̂∅ is obtained by integrating out all of
the variables except ξ∅, which is irrelevant to fn, so it is simply the probability
that p is realized on an arbitrary set of size n.

On the other hand, if |B| = n, then S(ξ̂B) is almost surely equal to the
set of quantifier-free types realized on the n! tuples b enumerating B. Indeed,

the probability of a type p given ξ̂B is simply the indicator function 1R(B) (no
variables are integrated out).

Now for any tuple b, letting B = ||b||, if b satisfies a type p containing Rχ,

then almost surely the family of sets C such that p ∈ S(ξ̂C) contains B, does
not contain ∅, and is closed under intersection (by Lemma 5.11). In particular,
the intersection of this family is non-empty. Therefore, almost surely, M is
χ-rooted. �
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We conclude this section with a discussion of the tension between rootedness
and trivial definable closure.

Let M be a χ-rooted model of an F -theory T . Suppose that p(x) ∈ S[n]
F (T )

contains χ(x) and is realized in M , and let a be a root of p in M . If M |= p(a, b),
then a is the unique element of M satisfying p(x, b), since if c 6= a, then a is not in
cb, so cb does not realize p. This implies that M has non-trivial group-theoretic
definable closure, since every automorphism of M fixing b also fixes a. Note that
T may still have trivial definable closure, since p is an F -type and, in general, is
not equivalent to a formula in F .

We can conclude, however, that if an F -theory T with trivial definable closure
has a χ-rooted model, then no non-redundant type that contains χ is isolated.
Thus isolated types are not dense in SnF (T ). By standard facts about model
theory in countable fragments of Lω1,ω (see [KK04]), this implies that T does
not have a prime model with respect to F -elementary embeddings, and that
there are continuum-many types in SnF (T ) containing χ(x).

Theorem 5.5 implies that the theory of every properly ergodic structure µ
exhibits this behavior: using Theorem 4.7 to obtain a countable fragment F and
an F -formula χ(x) of positive measure such that every type containing χ has
measure 0, the theory ThF (µ) has many χ-rooted models and (by Theorem 2.19)
trivial dcl.

Of course, given any particular F -type p containing χ(x), we can try to bring
χ-rootedness into direct conflict with trivial dcl by moving to a larger countable
fragment F ′ which contains the formula θp(x) :=

∧
ϕ∈p ϕ(x) isolating p. But

since p has measure 0, the theory ThF ′(µ) contains the sentence ∀x¬θp(x), ruling
out troublesome realizations of p.

Of course, a countable fragment F ′ can only isolate and rule out countably
many of the continuum-many types of measure 0 containing χ(x). For example,
given the kaleidoscope random graph (Example 3.2), we could extend from
the first-order fragment to a countable fragment F of Lω1,ω containing some
of the conjunctions

∧
n∈A xRny ∧

∧
n/∈A ¬xRny, for A ∈ 2N. Then the theory

ThF ′(µ) is essentially the same as ThFO(µ), but with countably many of the
continuum-many quantifier-free 2-types forbidden.

6. Constructing properly ergodic structures

In this section, given an F -theory T having trivial dcl, we will use a single
χ-rooted model M of T to construct a properly ergodic model of T . The strategy
is to build a Borel structure M equipped with a probability measure ν, via an
inverse limit of finite probability spaces. We use M as a guide in the construction
to ensure that M is also χ-rooted. Then our ergodic structure µ will be obtained
by i.i.d. sampling of countably many points from M according to ν and taking
the induced substructure.
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Having built the Borel structure M, we proceed to rescale ν, using a technique
from [AFKP17], to obtain not just one but continuum-many properly ergodic
structures concentrating on T .

Definition 6.1. A Borel structure M is an L-structure whose domain is a
standard Borel space such that for every relation symbol R of arity ar(R) in L,
the subset R ⊆ Mar(R) is Borel. A measured structure is a Borel structure
M equipped with an atomless probability measure ν.

Given a measured structure (M, ν), there is a canonical measure µM,ν on StrL,
obtained by sampling a countable ν-i.i.d. sequence (of almost surely distinct
points) from M and taking the induced substructure. Somewhat more formally,
µM,ν is the distribution of a random structure in StrL whose atomic diagram on N
is given by that of the random substructure of M with underlying set {ai | i ∈ N},
where (ai)i∈N is a ν-i.i.d. sequence of (almost surely unique) elements in M.

We now describe an AHK representation of the measures µM,ν in the sense of
§2.4. Choose a measure-preserving Borel isomorphism h from [0, 1] equipped with
the uniform measure to the domain of M equipped with ν, and for each n let ?n be

an arbitrary element of S
[n]
qf (L). Then define functions fn : [0, 1]Pfin([n]) → S

[n]
qf (L)

by

fn
(
(ξA)A⊆[n]

)
=

{
qftp(h(ξ{0}), . . . , h(ξ{n−1})) if ξ{i} 6= ξ{j} for i < j ∈ [n];

?n otherwise.

Informally, these functions ignore the random variables ξA when |A| 6= 1 and
view the (ξ{a})a∈N as independent random variables with distribution ν taking
their values in M.

Now (fn)n∈N is an AHK system, so it induces an invariant measure on StrL.
This measure is clearly the same as µM,ν described above via sampling of a
random substructure. Since the fn do not depend on the argument indexed by
∅, the measure µM,ν is ergodic (Theorem 2.28), which establishes the following
lemma.

Lemma 6.2. Given a measured structure (M, ν), the measure µM,ν on StrL is
an ergodic structure.

In fact, this AHK system is “random-free”. This terminology comes from the
world of graphons: a graphon is said to be random-free [Jan13, §10] when it is
{0, 1}-valued almost everywhere. This can be thought of as “having randomness”
only at the level of vertices (and not at higher levels — namely edges, in the
case of graphs). See also 0–1 valued graphons in [LS10] and the simple arrays of
[Kal99]. A graphon is random-free if and only if the corresponding AHK system
is random-free in the following sense.
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Definition 6.3. An AHK system (fn)n∈N is random-free if each function fn
depends only on the singleton variables ξ{a} for a ∈ N. An ergodic structure µ
is random-free if it has a random-free AHK representation.

We would like to transfer properties of M to almost-sure properties of µM,ν .
It is not true in general that µM,ν |= ThF (M). But the following property will
allow us to transfer satisfaction in M to satisfaction in µM,ν for Π−2 sentences.

Definition 6.4. Let (M, ν) be a measured structure, and let ϕ be a Π−2 sen-
tence. We say that (M, ν) satisfies ϕ with strong witnesses (or has strong
witnesses for ϕ) if the following hold.

• If ϕ is universal, then M |= ϕ.
• If ϕ is pithy Π2, i.e., of the form ∀x∃y ρ(x, y), then for every tuple a

from M, the set ρ(a,M) = {b ∈M | ρ(a, b)} either contains an element
of the tuple a or has positive ν-measure.

For a Π−2 theory T , we say that (M, ν) satisfies T with strong witnesses
when it satisfies ϕ with strong witnesses for all ϕ ∈ T .

Note that if (M, ν) satisfies T with strong witnesses, then M |= T .

Lemma 6.5. Let (M, ν) be a measured structure, and let µ = µM,ν.

(i) Let Q be a countable set of partial quantifier-free types. If M omits all the
types in Q, then µ almost surely omits all the types in Q.

(ii) Let T be a Π−2 theory. If (M, ν) satisfies T with strong witnesses, then µ
almost surely satisfies T .

(iii) Further, if there is a quantifier-free formula χ(x) such that M is χ-rooted
with respect to quantifier-free types, then µ is properly ergodic.

Proof. (i) If no tuple from M realizes a quantifier-free type q ∈ Q, then no tuple
from any countable substructure sampled from M realizes q.

(ii) Every universal sentence ∀xψ(x) in T is almost surely satisfied by µ, since
every tuple v from M satisfies the quantifier-free formula ψ(x).

Next, consider sentences of the form ∀x ∃y ρ(x, y). Fix an n-tuple a from N,
where n is the length of x. Corresponding to this tuple, we have a random tuple
v := (va1 , . . . , van) sampled from M. By the Fubini–Tonelli theorem, it suffices
to show that for a measure one collection of values of this random tuple (e.g.,
those for which coordinates indexed by distinct natural numbers take distinct
values), there is almost surely some b ∈ N such that M |= ρ

(
v, vb

)
.

By strong witnesses, ρ(v,M) either contains an element vai of the tuple v
or has positive measure. In the first case, vai serves as our witness. In the
second case, since there are infinitely many other independent random elements
(vb)b∈N\||a||, almost surely infinitely many of them land in the set ρ(c,M).

(iii) By (ii), µ |= T , and since χ(x) ∧ (
∧
i 6=j xi 6= xj) is consistent with T ,

µ(χ(x)) > 0. Let p be any type containing χ(x), and let q be its restriction to
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the quantifier-free formulas. To show that µ(p) = 0, it suffices to show that
µ(q) = 0.

Now since M is χ-rooted with respect to quantifier-free types, q has a root v
in M. The probability that a tuple sampled from M satisfies q is bounded above
by the probability that the tuple contains the root v. This probability is 0, since
the measure ν is atomless. Hence, by Theorem 4.7, µ is properly ergodic. �

Thus, after applying the Π−2 transformation from §2.3 to an F -theory T ,
we have reduced the problem of constructing a properly ergodic structure
almost surely satisfying T to that of constructing a measured structure with the
properties in Lemma 6.5.

Theorem 6.6. Let F be a countable fragment of Lω1,ω, let T be a complete
F -theory with trivial dcl, let χ(x) be a formula in F , and let M be a χ-rooted
model of T . Then there are continuum-many properly ergodic structures µ such
that µ |= T .

Proof. We begin by applying Theorem 2.24 to obtain a language L′ ⊇ L, a Π−2
theory T ′, and a countable set of partial quantifier-free types Q. Let M ′ be the
natural expansion of M to an L′-structure. Then M ′ is Rχ-rooted, where Rχ(x) is
the atomic L′-formula corresponding to the L-formula χ(x). By Corollary 2.25, it
suffices to construct a properly ergodic L′-structure which almost surely satisfies
T ′ and omits the types in Q.

Part 1: The inverse system
We construct a sequence (Ak)k∈N of finite L′-structures, each of which is

identified with a substructure of M ′. Given a structure A, we define the structure
A∗ to have underlying set A ∪ {∗}, where no new relations hold involving ∗.
For each k, we equip the underlying set of each A∗k with a discrete probability
measure νk that assigns positive measure to every element, and we fix a finite
sublanguage Lk of L′. Finally, we define connecting maps gk : A∗k+1 → A∗k such
that gk(∗) = ∗ for all k, which preserve the measures and certain quantifier-free
types, as follows:

(1) νk+1(g−1
k [X]) = νk(X) for all X ⊆ A∗k.

(2) If a is a tuple of distinct elements from Ak+1 such that gk(a) is a tuple of
distinct elements of Ak, then qftpLk(a) = qftpLk(gk(a)). Note that we make
no requirement if gk is not injective on ||a|| or if any element of a is mapped
to ∗.

We enumerate all pithy Π2 sentences in T ′ as 〈ϕk〉k∈N and the types in Q as
〈qi〉k∈N with redundancies, so that each sentence and each type appears infinitely
often in its list. We also enumerate the symbols in the language L′ as 〈Rk〉k∈N.

At stage 0, we start with A0 = ∅, the empty substructure of M ′. Then
A∗0 = {∗}, and we set ν0({∗}) = 1 and L0 = ∅.
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At stage k + 1, we are given Ak, νk, and Lk. We define Ak+1, νk+1, Lk+1, and
the connecting map gk in four steps.

Step 1: Splitting the elements of Ak.
Enumerate the elements of Ak as 〈a1, . . . , am〉. We build intermediate sub-

structures Bi = {a1, . . . , am, a
′
1, . . . , a

′
i} of M ′, where each new element a′j is a

“copy” of aj to be defined. We start with B0 = Ak.
Given Bi, let ϕBi(x1, . . . , xm, x

′
1, . . . , x

′
i) be the conjunction of all atomic and

negated atomic Lk formulas holding on Bi, so that ϕBi encodes the quantifier-free
Lk-type of Bi. Now there is an L-formula ψBi in F such that ψBi has the same
realizations as ϕBi in M ′. Since T = ThF (M) has trivial dcl, we can find another
realization a′i+1 6= ai+1 of ψBi(a1, . . . , xi+1, . . . , am, a

′
1, . . . , a

′
i) in M ′ \ Bi. Set

Bi+1 = Bi ∪ {a′i+1}. We have

(†) qftpLk(a1, . . . , ai+1, . . . , am, a
′
1, . . . , a

′
i) = qftpLk(a1, . . . , a

′
i+1, . . . , am, a

′
1, . . . , a

′
i).

At the end of Step 1, we have a structure Bm = {a1, . . . , am, a
′
1, . . . , a

′
m}.

Step 2: Splitting ∗.
The pithy Π2 sentence ϕk has the form ∀x ∃y ρ(x, y), where x is a tuple of

length j and ρ(x, y) is quantifier-free. Suppose there is a tuple a from Bm

such that Bm |= ¬∃y ρ(a, y). Then, since M ′ |= ∃y ρ(a, y), we can choose
some witness ca to the existential quantifier in M ′ \ Bm. Let W = {ca | a ∈
Bj
m and Bm |= ¬∃y ρ(a, y)} be the (finite) set of chosen witnesses. Note that if

x is the empty tuple of variables, then W is either empty or consists of a single
witness, depending on whether Bm |= ∃y ρ(y).

Let Ak+1 = Bm ∪W if W is non-empty, and otherwise let Ak+1 = Bm ∪ {c},
where c is any new element in M ′ \Bm.

Step 3: Defining gk and νk+1.
Recall that gk is to be a map from A∗k+1 to A∗k. We set gk(ai) = gk(a

′
i) = ai

and gk(c) = gk(∗) = ∗ for c ∈ Ak+1 \Bm.
We define νk+1 by splitting the measure of an element of A∗k evenly among its

preimages under gk. So νk+1(ai) = νk+1(a′i) = 1
2
νk(ai), and νk+1(c) = νk+1(∗) =

1
N
νk(∗), where N = |A∗k+1 \ Bm| ≥ 2. Note that every element of A∗k+1 has

positive measure, by induction.

Step 4: Defining Lk+1.
We expand the current language Lk to Lk+1 by adding finitely many new

symbols from L′.

(a) Add Rk to Lk+1 if it is not already included.
(b) Since Ak+1 is a substructure of M ′, no tuple from Ak+1 realizes qk. That is,

for every tuple a from Ak+1, there is some quantifier-free formula ϕa(x) ∈ qk
such that M ′ |= ¬ϕa(a). Add the finitely many relation symbols appearing
in ϕa to Lk+1.
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(c) Let n be the number of free variables in χ(x). For every pair of n-tuples a
and b from Ak+1 that realize distinct quantifier-free L′-types in M ′, there is
some relation symbol Ra,b that separates their types. Add Ra,b to Lk+1.

This completes stage k + 1 of the construction. Let us check that conditions
(1) and (2) above are satisfied by the connecting map gk.

(1): Since νk and νk+1 are discrete measures on finite spaces, it suffices to check
that νk(a) =

∑
b∈g−1

k [{a}] νk+1(b) for every singleton a ∈ A∗k. This follows

immediately from our definitions of gk and νk+1.
(2): Let b be a tuple from Ak+1. The assumption that gk(b) is a tuple of distinct

elements of Ak means that every element of b is in Bm (since the other
elements are mapped to ∗) and that ai and a′i are not both in b for any i.
For any function γ : [m] → [2], let aγ be the m-tuple which contains ai if
γ(i) = 0 and a′i if γ(i) = 1. Then, expanding b to an m-tuple of the form
aγ, it suffices to show that qftpLk(a

γ) = qftpLk(gk(a
γ)) = qftpLk(a). This

follows by several applications of instances of the equality (†) above.

Part 2: The measured structure
Let X be the inverse limit of the system of sets A∗k and surjective connecting

maps gk. For each k, let πk be the projection map X→ Ak ∪ {∗}. Then X is a
profinite set, so it has a natural topological structure as a Stone space, in which
the basic clopen sets are exactly the preimages under the maps πk of subsets of
the sets A∗k. Note that X is separable, so it is a standard Borel space.

Let ν∗ be the finitely additive measure on the Boolean algebra B∗ of clopen
subsets of X defined by ν∗(π−1

k [X]) = νk(X). This is well defined by condition (1).
By the Hahn–Kolmogorov Measure Extension Theorem [Tao11, Theorem 1.7.8],
ν∗ extends to a Borel probability measure ν on X.

Now each element a of A∗k has at least 2 preimages in A∗k+1, each of which
have measure at most 1

2
νk(a). Hence, by induction, the measure of each element

of A∗k is at most 2−k. So for all x ∈ X, the point x is contained in a basic clopen
set Xk = π−1

k [{πk(x)}] with ν(Xk) ≤ 2−k for all k. This implies that ν({x}) = 0
and ν is non-atomic.

Note that there is a unique element ∗ of X with the property that πk(∗) = ∗
for all k. We define a Borel L′-structure M with domain X \ {∗} (which is also
a standard Borel space). Since we have only removed a measure 0 set from X,
the probability measure ν on X restricts to a probability measure on M, which
we also call ν.

We define the structure on M by specifying the quantifier-free type of every
tuple of distinct elements from M. By Step 4 (a),

⋃∞
k=0 L = L′. Given a tuple

a of distinct elements from M and a quantifier-free formula ϕ(x), we choose k
large enough so that Lk contains all of the relation symbols appearing in ϕ(x)
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and so that πk(a) is a tuple of distinct elements from Ak. We set M |= ϕ(a) if
and only if Ak |= ϕ(πk(a)). This is well-defined by condition (2).

By Step 4 (a),
⋃∞
k=0 Lk = L′. Given a tuple a from M and a symbol R in L′,

we choose k large enough so that R ∈ Lk and distinct elements of a are mapped
by πk to distinct elements of Ak. We set M |= R(a) if and only if Ak |= R(πk(a)).
This is well-defined by condition (2).

According to this definition, to determine whether a quantifier-free formula
ϕ(x) holds of a tuple a with repeated elements, we can remove the redundancies
from a and replace the corresponding variables in x. For example, if ai = aj , we
can remove aj and replace instances of xj in ϕ(x) with xi. This is equivalent
to choosing k large enough so that distinct elements of a are mapped by πk to
distinct elements of Ak and checking whether Ak |= ϕ(πk(a)).

The interpretation of a relation symbol R is then a Borel subset of Mar(R).
Indeed, fixing k, the set of tuples a such that distinct elements of a are mapped
by πk to distinct elements of Ak and πk(a) satisfies R is closed (the finite union
of certain boxes intersected with certain diagonals), and the interpretation of R
is the countable union (over k) of these sets. Hence M is a Borel structure.

We now verify the conditions of Lemma 6.5 for the measured structure (M, ν),
the Π−2 theory T ′, the quantifier-free types Q, and the quantifier-free formula
Rχ(x).

(i) M omits all the types in Q.
Let q(x) be a type in Q, and let a be a tuple from M. Let k be large enough

so that πk(a) is a tuple of distinct elements of Ak. Since q appears infinitely
many times in our enumeration of Q, there is some l > k such that q = ql. Then
b := πl+1(a) is also a tuple of distinct elements of Al+1. In Step 4 (b) of stage
l + 1 of the construction, we ensured that Ll+1 includes the relation symbols
appearing in a quantifier-free formula ϕb(x) ∈ qk such that Al+1 |= ¬ϕb(b). Then
also M |= ¬ϕb(a), and hence a does not realize q.

(ii) (M, ν) satisfies T ′ with strong witnesses.
Let ϕ be a Π−2 sentence in T ′. Then ϕ has the form ∀xψ(x), where ψ(x) is

either quantifier-free or has a single existential quantifier. Let a be a tuple from
M. Let k be large enough so that all the symbols in ϕ are in Lk and πk(a) is a
tuple of disjoint elements of Ak.

If ψ(x) is quantifier-free, then M |= ψ(a) if and only if Ak |= ψ(πk(a)). The
latter holds, since Ak is a substructure of M, and M |= ϕ.

Otherwise, ψ(x) has the form ∃y ρ(x, y), and since ϕ appears infinitely many
times in our enumeration of the pithy Π2 sentences in T ′, there is some l > k such
that ϕ = ϕl. Then πl(a) is a tuple of distinct elements of Al, and b := πl+1(a) is
a tuple of distinct elements of Al+1. In Step 2 of stage l + 1 of the construction,
we ensured that there was some witness cb such that Al+1 |= ρ(b, cb). If cb is
not an element of the tuple b, then for any c ∈ M such that πl+1(c) = cb, we
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have M |= ρ(a, c). Since ν(π−1
l+1[{c}]) = νl+1(c) > 0, the set ρ(a,M) has positive

ν-measure. On the other hand, if cb is an element of the tuple b, say bi, then
M |= ρ(a, ai).

(iii) M is Rχ-rooted with respect to quantifier-free types.
We would like to show that every non-redundant quantifier-free n-type con-

taining Rχ(x) that is realized in M has a root in M. Suppose not. Then there
is a quantifier-free type p(x) and a family of n-tuples (ai)i∈I from M such that
each ai realizes p, but there is no element a which is in every ai. Note that if
such a family exists, then we can find one containing only finitely many tuples:
picking some a in the family, for each element aj in a there is another tuple in
the family which does not contain aj, so n+ 1 tuples suffice.

Let (a1, . . . , am) be our finite family of tuples. Let k be large enough so that

Rχ ∈ Lk and πk is injective on
⋃m
i=1 ||ai||. For all i, let b

i
= πk(a

i). Then all of

the tuples b
i

realize the same quantifier-free Lk-type p′ = p � Lk in Ak, and p′

contains Rχ(x). By Step 4 (c) of stage k of our construction, the tuples b
i

must
actually realize the same quantifier-free L′ type q ⊇ p′ in M ′ (which may be
distinct from p). But there is no element which appears in all of these tuples,
contradicting the fact that M ′ is Rχ-rooted.

Let µ = µM,ν . By Lemma 6.5, µ is a properly ergodic structure that almost
surely satisfies T ′ and omits the types in Q.

Part 3: Rescaling to obtain continuum-many properly ergodic structures
Again, let n be the number of free variables in χ(x). For any quantifier-free

formula ϕ(x1, . . . , xn), we define the quantifier-free formula ϕ∗(x1, . . . , xn):∨
σ∈Sym(n)

ϕ(xσ(1), . . . , xσ(n)).

Note that the set ϕ∗(M) = {a ∈Mn |M |= ϕ∗(a)} is invariant under the natural
action of the symmetric group Sym(n) on Mn by permuting coordinates.

We will use the following claim to apply the rescaling technique from [AFKP17].

Claim: There is some quantifier-free formula ϕ(x) such that 0 < νn(ϕ∗(M)) < 1.
Proof of Claim. Suppose not. Then for every quantifier-free formula ϕ(x),
νn(ϕ∗(M)) is equal to 0 or 1. Note that νn(ϕ∗(M)) > 0 if and only if νn(ϕ(M)) >
0. In particular, since νn(Rχ(M)) > 0, we have νn(R∗χ(M)) = 1.

Let A ⊆ Mn be the set of tuples satisfying the partial quantifier-free type
{ϕ∗(x) | νn(ϕ∗(M)) = 1} ∪ {¬ϕ∗(x) | νn(ϕ∗(M)) = 0}. Since A is a countable
intersection of measure 1 sets, it has measure 1. Pick a tuple a ∈ A. Some
permutation of a satisfies Rχ, and A is Sym(n)-invariant, so we may assume
that M |= Rχ(a). Let p(x) = qftp(a). Since Rχ(x) ∈ p(x), some coordinate ai of
a is a root for p(x).
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Now ν is atomless, so the set of tuples in Mn containing ai has measure 0.
Thus we can pick another tuple b ∈ A which does not contain ai. By rootedness,
no permutation of b satisfies p(x).

In particular, there is some quantifier-free formula ψ(x) ∈ p(x) such that no
permutation of b satisfies ψ(x) (explicitly, take the conjunction of n! formulas in
p(x), one separating p(x) from qftp(σ(b)) for each σ ∈ Sym(n)). We therefore
have M |= ¬ψ∗(b). But we also have that ψ∗(x) ∈ p(x) and so M |= ψ∗(a).
Hence every tuple in A must satisfy ψ∗(x), contradicting the fact that b ∈ A. �

In [AFKP17], a method is described for rescaling a probability measure µ
according to a weight W (essentially an assignment of weights to the pieces of a
finite partition of the domain) to obtain a new probability measure µW . In that
paper, all probability measures are continuous measures on R, but the results
apply equally well to measures on M, since this is a standard Borel space.

The main observation about this construction is that µ and µW are equivalent
measures, in the sense that they are absolutely continuous with respect to each
other. It follows that for our measure ν on M, any measure of the form νW is an
atomless probability measure on M, with the property that (M, νW) satisfies T ′

with strong witnesses, and hence the measure µW = µM,νW on StrL′ is a properly
ergodic structure which almost surely satisfies T ′ and omits the types in Q.

Now by the key proposition [AFKP17, Proposition 3.8], since the set ϕ∗(M)
from the Claim above is an Sym(n)-invariant Borel set with νn-measure strictly
between 0 and 1, the expression νW(ϕ∗(M)) takes on continuum-many values as
W varies through the possible weights. And since µW(Jϕ∗(a)K) = νW(ϕ∗(M)) for
any tuple a of distinct elements of N, this construction produces continuum-many
properly ergodic structures of the form µW . �

Theorem 6.6, along with the results of the previous sections, gives a “measure-
free” characterization of those theories which admit properly ergodic models.

Theorem 6.7. Suppose Σ is a set of sentences in some countable fragment F
of Lω1,ω. The following are equivalent:

(1) There is a properly ergodic structure µ such that µ |= Σ.
(2) There are continuum-many properly ergodic structures µ such that µ |= Σ.
(3) There is a countable fragment F ′ ⊇ F of Lω1,ω, a complete F ′-theory

T ⊇ Σ with trivial dcl, a formula χ(x) in F ′, and a model M |= T which
is χ-rooted.

Proof. (3)→ (2): By Theorem 6.6, there are continuum-many properly ergodic
structures µ such that µ |= T , and Σ ⊆ T .

(2)→ (1): Clear.
(1)→ (3): Theorem 4.7 gives us a countable fragment F ′ ⊇ F , and a formula

χ(x) in F ′ such that µ(χ(x)) > 0, but for every F ′-type p containing χ(x),
µ(p) = 0. Let T = ThF (µ). Then Σ ⊆ T , and T has trivial dcl by Theorem 2.19.
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Now by Theorem 5.5, the set of χ-rooted models of T has measure 1. In
particular, it is non-empty. �

Remark 6.8. The conditions in Theorem 6.7 (3) can sometimes be satisfied with
F ′ = F . In fact, for many of the examples in Section 3, we could take F ′ to be
first-order logic. However, Example 3.6 shows that, in general, the move to a
larger fragment of Lω1,ω is necessary.

The following two corollaries, which may be of interest independently of
Theorem 6.7, follow immediately from its proof in the case that µ is properly
ergodic and from the analogous construction in [AFP16] in the case that µ is
almost surely isomorphic to a countable structure.

Corollary 6.9. If µ is an ergodic structure, then for any countable fragment F
of Lω1,ω, the theory ThF (µ) has a Borel model (of cardinality 2ℵ0).

Corollary 6.10. For every countable fragment F of Lω1,ω, every ergodic struc-
ture µ is F -elementarily equivalent to a random-free ergodic structure µ′. That
is, there exists a random-free ergodic structure µ′ such that ThF (µ) = ThF (µ′).

Moreover, except in the case that µ concentrates on the isomorphism type of a
highly homogeneous structure M , there exist continuum-many such µ′.

For a definition and discussion of high homogeneity, and the previously-
mentioned characterization [Cam76] of highly homogeneous structures as those
interdefinable with one of the five reducts of the rational linear order, see
[AFKP17, §2.3].
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